
Uniprocessor Garbage Collection Techniques?Paul R. WilsonUniversity of TexasAustin, Texas 78712-1188 USA(wilson@cs.utexas.edu)Abstract. We survey basic garbage collection algorithms, and variations such as incremental and gen-erational collection. The basic algorithms include reference counting, mark-sweep, mark-compact, copy-ing, and treadmill collection. Incremental techniques can keep garbage collection pause times short, byinterleaving small amounts of collection work with program execution. Generational schemes improvee�ciency and locality by garbage collecting a smaller area more often, while exploiting typical lifetimecharacteristics to avoid undue overhead from long-lived objects.1 Automatic Storage ReclamationGarbage collection is the automatic reclamation of computer storage [Knu69, Coh81, App91]. While in manysystems programmers must explicitly reclaim heap memory at some point in the program, by using a \free" or\dispose" statement, garbage collected systems free the programmer from this burden. The garbage collector'sfunction is to �nd data objects2 that are no longer in use and make their space available for reuse by the therunning program. An object is considered garbage (and subject to reclamation) if it is not reachable by therunning program via any path of pointer traversals. Live (potentially reachable) objects are preserved by thecollector, ensuring that the program can never traverse a \dangling pointer" into a deallocated object.This paper is intended to be an introductory survey of garbage collectors for uniprocessors, especially thosedeveloped in the last decade. For a more thorough treatment of older techniques, see [Knu69, Coh81].1.1 MotivationGarbage collection is necessary for fully modular programming, to avoid introducing unnecessary inter-moduledependencies. A routine operating on a data structure should not have to know what other routines may beoperating on the same structure, unless there is some good reason to coordinate their activities. If objectsmust be deallocated explicitly, some module must be responsible for knowing when other modules are notinterested in a particular object.Since liveness is a global property, this introduces nonlocal bookkeeping into routines that might other-wise be orthogonal, composable, and reusable. This bookkeeping can reduce extensibility, because when newfunctionality is implemented, the bookkeeping code must be updated.The unnecessary complications created by explicit storage allocation are especially troublesome becauseprogramming mistakes often introduce erroneous behavior that breaks the basic abstractions of the program-ming language, making errors hard to diagnose.Failing to reclaim memory at the proper point may lead to slow memory leaks, with unreclaimed memorygradually accumulating until the process terminates or swap space is exhausted. Reclaiming memory too sooncan lead to very strange behavior, because an object's space may be reused to store a completely di�erentobject while an old pointer still exists. The same memory may therefore be interpreted as two di�erent objectssimultaneously with updates to one causing unpredictable mutations of the other.? This paper will appear in the proceedings of the 1992 International Workshop on Memory Management (St.Malo, France, September 1992) in the Springer-Verlag Lecture Notes in Computer Science series.2 We use the term object loosely, to include any kind of structured data record, such as Pascal records or C structs,as well as full-
edged objects with encapsulation and inheritance, in the sense of object-oriented programming.



These bugs are particularly dangerous because they often fail to show up repeatably, making debuggingvery di�cult; they may never show up at all until the program is stressed in an unusual way. If the allocatorhappens not to reuse a particular object's space, a dangling pointer may not cause a problem. Later, in the�eld, the application may crash when it makes a di�erent set of memory demands, or is linked with a di�erentallocation routine. A slow leak may not be noticeable while a program is being used in normal ways|perhapsfor many years|because the program terminates before too much extra space is used. But if the code isincorporated into a long-running server program, the server will eventually exhaust its swap space, and crash.Explicit allocation and reclamation lead to program errors in more subtle ways as well. It is common forprogrammers to statically allocate a moderate number of objects, so that it is unnecessary to allocate themon the heap and decide when and where to reclaim them. This leads to �xed limitations on software, makingthem fail when those limitations are exceeded, possibly years later when memories (and data sets) are muchlarger. This \brittleness" makes code much less reusable, because the undocumented limits cause it to fail,even if it's being used in a way consistent with its abstractions. (For example, many compilers fail when facedwith automatically-generated programs that violate assumptions about \normal" programming practices.)These problems lead many applications programmers to implement some form of application-speci�c gar-bage collection within a large software system, to avoid most of the headaches of explicit storage management.Many large programs have their own data types that implement reference counting, for example. Unfortunately,these collectors are often both incomplete and buggy, because they are coded up for a one-shot application.The garbage collectors themselves are therefore often unreliable, as well as being hard to use because theyare not integrated into the programming language. The fact that such kludges exist despite these problemsis a testimony to the value of garbage collection, and it suggests that garbage collection should be part ofprogramming language implementations.In the rest of this paper, we focus on garbage collectors that are built into a language implementation.The usual arrangement is that the allocation routines of the language (or imported from a library) performspecial actions to reclaim space, as necessary, when a memory request is not easily satis�ed. (That is, calls tothe \deallocator" are unnecessary because they are implicit in calls to the allocator.)Most collectors require some cooperation from the compiler (or interpreter), as well: object formats mustbe recognizable by the garbage collector, and certain invariants must be preserved by the running code.Depending on the details of the garbage collector, this may require slight changes to the code generator, toemit certain extra information at compile time, and perhaps execute di�erent instruction sequences at runtime [Boe91, WH91, DMH92]. (Contrary to widespread misconceptions, there is no con
ict between using acompiled language and garbage collection; state-of-the art implementations of garbage-collected languages usesophisticated optimizing compilers.)1.2 The Two-Phase AbstractionGarbage collection automatically reclaims the space occupied by data objects that the running program cannever access again. Such data objects are referred to as garbage. The basic functioning of a garbage collectorconsists, abstractly speaking, of two parts:1. Distinguishing the live objects from the garbage in some way, or garbage detection, and2. Reclaiming the garbage objects' storage, so that the running program can use it.In practice, these two phases may be functionally or temporally interleaved, and the reclamation techniqueis strongly dependent on the garbage detection technique.In general, garbage collectors use a \liveness" criterion that is somewhat more conservative than thoseused by other systems. In an optimizing compiler, a value may be considered dead at the point that it cannever be used again by the running program, as determined by control 
ow and data 
ow analysis. A garbagecollector typically uses a simpler, less dynamic criterion, de�ned in terms of a root set and reachability fromthese roots. At the point when garbage collection occurs3 all globally visible variables of active procedures3 Typically, this happens when allocation of an object has been attempted by the running program, but there is notsu�cient free memory to satisfy the request. The allocation routine calls a garbage collection routine to free up space,then allocates the requested object. 2



are considered live, and so are the local variables of any active procedures. The root set therefore consists ofthe global variables, local variables in the activation stack, and any registers used by active procedures. Heapobjects directly reachable from any of these variables could be accessed by the running program, so they mustbe preserved. In addition, since the program might traverse pointers from those objects to reach other objects,any object reachable from a live object is also live. Thus the set of live objects is simply the set of objects onany directed path of pointers from the roots.Any object that is not reachable from the root set is garbage, i.e., useless, because there is no legal sequenceof program actions that would allow the program to reach that object. Garbage objects therefore can't a�ectthe future course of the computation, and their space may be safely reclaimed.1.3 Object RepresentationsThroughout this paper, we make the simplifying assumption that heap objects are self-identifying, i.e., that itis easy to determine the type of an object at run time. Implementations of statically-typed garbage collectedlanguages typically have hidden \header" �elds on heap objects, i.e., an extra �eld containing type information,which can be used to decode the format of the object itself. (This is especially useful for �nding pointers toother objects.)Dynamically-typed languages such as Lisp and Smalltalk usually use tagged pointers; a slightly shortenedrepresentation of the hardware address is used, with a small type-identifying �eld in place of the missing addressbits. This also allows short immutable objects (in particular, small integers) to be represented as unique bitpatterns stored directly in the \address" part of the �eld, rather than actually referred to by an address. Thistagged representation supports polymorphic �elds which may contain either one of these \immediate" objectsor a pointer to an object on the heap. Usually, these short tags are augmented by additional information inheap-allocated objects' headers.For a purely statically-typed language, no per-object runtime type information is actually necessary, exceptthe types of the root set variables.4 Once those are known, the types of their referents are known, and their�elds can be decoded [App89a, Gol91]. This process continues transitively, allowing types to be determined atevery pointer traversal. Despite this, headers are often used for statically-typed languages, because it simpli�esimplementations at little cost. (Conventional (explicit) heap management systems often use object headers forsimilar reasons.)2 Basic Garbage Collection TechniquesGiven the basic two-part operation of a garbage collector, many variations are possible. The �rst part, distin-guishing live objects from garbage, may be done in several ways: by reference counting, marking, or copying.5 Because each scheme has a major in
uence on the second part (reclamation) and on reuse techniques, wewill introduce reclamation methods as we go.2.1 Reference CountingIn a reference counting system [Col60], each object has an associated count of the references (pointers) to it.Each time a reference to the object is created, e.g., when a pointer is copied from one place to another byan assignment, the object's count is incremented. When an existing reference to an object is eliminated, thecount is decremented. (See Fig. 1.) The memory occupied by an object may be reclaimed when the object'scount equals zero, since that indicates that no pointers to the object exist and the running program could notreach it.4 Conservative garbage collectors [BW88, Wen90, BDS91, WH91] are usable with little or no cooperation from thecompiler|not even the types of named variables|but we will not discuss them here.5 Some authors use the term \garbage collection" in a narrower sense, which excludes reference counting and/or copycollection systems; we prefer the more inclusive sense because of its popular usage and because it's less awkwardthan \automatic storage reclamation." 3
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Fig. 1. Reference counting.(In a straightforward reference counting system, each object typically has a header �eld of informationdescribing the object, which includes a sub�eld for the reference count. Like other header information, thereference count is generally not visible at the language level.)When the object is reclaimed, its pointer �elds are examined, and any objects it holds pointers to also havetheir reference counts decremented, since references from a garbage object don't count in determining liveness.Reclaiming one object may therefore lead to the transitive decrementing of reference counts and reclaimingmany other objects. For example, if the only pointer into some large data structure becomes garbage, all of thereference counts of the objects in that structure typically become zero, and all of the objects are reclaimed.4



In terms of the abstract two-phase garbage collection, the adjustment and checking of reference countsimplements the �rst phase, and the reclamation phase occurs when reference counts hit zero. These operationsare both interleaved with the execution of the program, because they may occur whenever a pointer is createdor destroyed.One advantage of reference counting is this incremental nature of most of its operation|garbage collectionwork (updating reference counts) is interleaved closely with the running program's own execution. It can easilybe made completely incremental and real time; that is, performing at most a small and bounded amount ofwork per unit of program execution.Clearly, the normal reference count adjustments are intrinsically incremental, never involving more than afew operations for any given operation that the program executes. The transitive reclamation of whole datastructures can be deferred, and also done a little at a time, by keeping a list of freed objects whose referencecounts have become zero but which haven't yet been processed yet.This incremental collection can easily satisfy real time requirements, guaranteeing that memory manage-ment operations never halt the executing program for more than a very brief period. This can support real-timeapplications in which guaranteed response time is critical; incremental collection ensures that the program isallowed to perform a signi�cant, though perhaps appreciably reduced, amount of work in any signi�cantamount of time. (A target criterion might be that no more than one millisecond out of every two-millisecondperiod would be spent on storage reclamation operations, leaving the other millisecond for \useful work" tosatisfy the program's real-time purpose.)There are two major problems with reference counting garbage collectors; they are di�cult to make e�cient,and they are not always e�ective.The Problem with Cycles The e�ectiveness problem is that reference counting fails to reclaim circularstructures. If the pointers in a group of objects create a (directed) cycle, the objects' reference counts arenever reduced to zero, even if there is no path to the objects from the root set [McB63].Figure 2 illustrates this problem. Consider the isolated pair of objects on the right. Each holds a pointer tothe other, and therefore each has a reference count of one. Since no path from a root leads to either, however,the program can never reach them again.Conceptually speaking, the problem here is that reference counting really only determines a conservativeapproximation of true liveness. If an object is not pointed to by any variable or other object, it is clearlygarbage, but the converse is often not true.It may seem that circular structures would be very unusual, but they are not. While most data structuresare acyclic, it is not uncommon for normal programs to create some cycles, and a few programs create verymany of them. For example, nodes in trees may have \backpointers," to their parents, to facilitate certainoperations. More complex cycles are sometimes formed by the use of hybrid data structures which combineadvantages of simpler data structures, and the like.Systems using reference counting garbage collectors therefore usually include some other kind of garbagecollector as well, so that if too much uncollectable cyclic garbage accumulates, the other method can be usedto reclaim it.Many programmers who use reference-counting systems (such as Interlisp and early versions of Smalltalk)have modi�ed their programming style to avoid the creation of cyclic garbage, or to break cycles before theybecome a nuisance. This has a negative impact on program structure, and many programs still have storage\leaks" that accumulate cyclic garbage which must be reclaimed by some other means.6 These leaks, in turn,can compromise the real-time nature of the algorithm, because the system may have to fall back to the use ofa non-real-time collector at a critical moment.The E�ciency Problem. The e�ciency problem with reference counting is that its cost is generally pro-portional to the amount of work done by the running program, with a fairly large constant of proportionality.6 [Bob80] describes modi�cations to reference counting to allow it to handle some special cases of cyclic structures,but this restricts the programmer to certain stereotyped patterns.5
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Fig. 2. Reference counting with unreclaimable cycle.One cost is that when a pointer is created or destroyed, its referent's count must be adjusted. If a variable'svalue is changed from one pointer to another, two objects' counts must be adjusted|one object's referencecount must be incremented, the other's decremented and then checked to see if it has reached zero.Short-lived stack variables can incur a great deal of overhead in a simple reference-counting scheme. Whenan argument is passed, for example, a new pointer appears on the stack, and usually disappears almostimmediately because most procedure activations (near the leaves of the call graph) return very shortly afterthey are called. In these cases, reference counts are incremented, and then decremented back to their originalvalue very soon. It is desirable to optimize away most of these increments and decrements that cancel each6



other out.Deferred Reference Counting. Much of this cost can be optimized away by special treatment of localvariables [DB76]. Rather than always adjusting reference counts and reclaiming objects whose counts becomezero, references from the local variables are not included in this bookkeeping most of the time. Usually, referencecounts are only adjusted to re
ect pointers from one heap object to another. This means that reference countsmay not be accurate, because pointers from the stack may be created or destroyed without being accountedfor; that, in turn, means that objects whose count drops to zero may not actually be reclaimable. Garbagecollection can only be done when references from the stack are taken into account.Every now and then, the reference counts are brought up to date by scanning the stack for pointers to heapobjects. Then any objects whose reference counts are still zero may be safely reclaimed. The interval betweenthese phases is generally chosen to be short enough that garbage is reclaimed often and quickly, yet still longenough that the cost of periodically updating counts (for stack references) is not high.This deferred reference counting [DB76] avoids adjusting reference counts for most short-lived pointersfrom the stack, and greatly reduces the overhead of reference counting. When pointers from one heap objectto another are created or destroyed, however, the reference counts must still be adjusted. This cost is stillroughly proportional to the amount of work done by the running program in most systems, but with a lowerconstant of proportionality.There is another cost of reference-counting collection that is harder to escape. When objects' counts go tozero and they are reclaimed, some bookkeeping must be done to make them available to the running program.Typically this involves linking the freed objects into one or more \free lists" of reusable objects, out of whichthe program's allocation requests are satis�ed.It is di�cult to make these reclamation operations take less than several instructions per object, and thecost is therefore proportional to the number of objects allocated by the running program.These costs of reference counting collection have combined with its failure to reclaim circular structuresto make it unattractive to most implementors in recent years. As we will explain below, other techniques areusually more e�cient and reliable.(This is not to say that reference counting is a dead technique. It still has advantages in terms of the im-mediacy with which it reclaims most garbage,7 and corresponding bene�cial e�ects on locality of reference;8 areference counting system may perform with little degradation when almost all of the heap space is occupied bylive objects, while other collectors rely on trading more space for higher e�ciency. Reference counts themselvesmay be valuable in some systems. For example, they may support optimizations in functional language imple-mentations by allowing destructive modi�cation of uniquely-referenced objects. Distributed garbage collectionis often done with reference-counting between nodes of a distributed system, combined with mark-sweep orcopying collection within a node. Future systems may �nd other uses for reference counting, perhaps in hybridcollectors also involving other techniques, or when augmented by specialized hardware. Nonetheless, referencecounting is generally not considered attractive as the primary garbage collection technique on conventionaluniprocessor hardware.)For most high-performance general-purpose systems, reference counting has been abandoned in favor oftracing garbage collectors, which actually traverse (trace out) the graph of live objects, distinguishing themfrom the unreachable (garbage) objects which can then be reclaimed.2.2 Mark-Sweep CollectionMark-sweep garbage collectors [McC60] are named for the two phases that implement the abstract garbagecollection algorithm we described earlier:7 This can be useful for �nalization, that is, performing \clean-up" actions (like closing �les) when objects die [Rov85].8 DeTreville [DeT90] argues that the locality characteristics of reference-counting may be superior to those of other col-lection techniques, based on experience with the Topaz system. However, as [WLM92] shows, generational techniquescan recapture some of this locality. 7



1. Distinguish the live objects from the garbage. This is done by tracing|starting at the root set and actuallytraversing the graph of pointer relationships|usually by either a depth-�rst or breadth-�rst traversal. Theobjects that are reached are marked in some way, either by altering bits within the objects, or perhaps byrecording them in a bitmap or some other kind of table.2. Reclaim the garbage. Once the live objects have been made distinguishable from the garbage objects,memory is swept, that is, exhaustively examined, to �nd all of the unmarked (garbage) objects and reclaimtheir space. Traditionally, as with reference counting, these reclaimed objects are linked onto one or morefree lists so that they are accessible to the allocation routines.There are three major problems with traditional mark-sweep garbage collectors. First, it is di�cult tohandle objects of varying sizes without fragmentation of the available memory. The garbage objects whosespace is reclaimed are interspersed with live objects, so allocation of large objects may be di�cult; severalsmall garbage objects may not add up to a large contiguous space. This can be mitigated somewhat by keepingseparate free lists for objects of varying sizes, and merging adjacent free spaces together, but di�culties remain.(The system must choose whether to allocate more memory as needed to create small data objects, or to divideup large contiguous hunks of free memory and risk permanently fragmenting them. This fragmentation problemis not unique to mark-sweep|it occurs in reference counting as well, and in most explicit heap managementschemes.)The second problem with mark-sweep collection is that the cost of a collection is proportional to the sizeof the heap, including both live and garbage objects. All live objects must be marked, and all garbage objectsmust be collected, imposing a fundamental limitation on any possible improvement in e�ciency.The third problem involves locality of reference. Since objects are never moved, the live objects remainin place after a collection, interspersed with free space. Then new objects are allocated in these spaces; theresult is that objects of very di�erent ages become interleaved in memory. This has negative implications forlocality of reference, and simple mark-sweep collectors are often considered unsuitable for most virtual memoryapplications. (It is possible for the \working set" of active objects to be scattered across many virtual memorypages, so that those pages are frequently swapped in and out of main memory.) This problem may not be asbad as many have thought, because objects are often created in clusters that are typically active at the sametime. Fragmentation and locality problems are is unavoidable in the general case, however, and a potentialproblem for some programs.It should be noted that these problems may not be insurmountable, with su�ciently clever implementationtechniques. For example, if a bitmap is used for mark bits, 32 bits can be checked at once with a 32-bit integerALU operation and conditional branch. If live objects tend to survive in clusters in memory, as they apparentlyoften do, this can greatly diminish the constant of proportionality of the sweep phase cost; the theoreticallinear dependence on heap size may not be as troublesome as it seems at �rst glance. As a result, the dominantcost may be the marking phase, which is proportional to the amount of live data that must be traversed, notthe total amount of memory allocated. The clever use of bitmaps can also reduce the cost of allocation, byallowing fast allocation from contiguous unmarked areas, rather than using free lists.The clustered survival of objects may also mitigate the locality problems of re-allocating space amid liveobjects; if objects tend to survive or die in groups in memory [Hay91], the interspersing of objects used bydi�erent program phases may not be a major consideration.At this point, the technology of mark-sweep collectors (and related hybrids) is rapidly evolving. As will benoted later, this makes them resemble copying collectors in some ways; at this point we do not claim to beable to pick a winner between high-tech mark-sweep and copy collectors.2.3 Mark-Compact CollectionMark-compact collectors remedy the fragmentation and allocation problems of mark-sweep collectors. As withmark-sweep, a marking phase traverses and marks the reachable objects. Then objects are compacted, movingmost of the live objects until all of the live objects are contiguous. This leaves the rest of memory as a singlecontiguous free space. This is often done by a linear scan through memory, �nding live objects and \sliding"them down to be adjacent to the previous object. Eventually, all of the live objects have been slid down to8



be adjacent to a live neighbor. This leaves one contiguous occupied area at one end of heap memory, andimplicitly moving all of the \holes" to the contiguous area at the other end.This sliding compaction has several interesting properties. The contiguous free area eliminates fragmen-tation problems so that allocating objects of various sizes is simple. Allocation can be implemented as theincrementing of a pointer into a contiguous area of memory, in much the way that di�erent-sized objects canbe allocated on a stack. In addition, the garbage spaces are simply \squeezed out," without disturbing theoriginal ordering of objects in memory. This can ameliorate locality problems, because the allocation order-ing is usually more similar to subsequent access orderings than an arbitrary ordering imposed by a garbagecollector [CG77, Cla79].While the locality that results from sliding compaction is advantageous, the collection process itself sharesthe mark-sweep's unfortunate property that several passes over the data are required. After the initial markingphase, sliding compactors make two or three more passes over the live objects [CN83]. One pass computesthe new locations that objects will be moved to; subsequent passes must update pointers to refer to objects'new locations, and actually move the objects. These algorithms may be therefore be signi�cantly slower thanmark-sweep if a large percentage of data survives to be compacted.An alternative approach is to use a two-pointer algorithm, which scans inward from both ends of a heapspace to �nd opportunities for compaction. One pointer scans downward from the top of the heap, looking forlive objects, and the other scans upward from the bottom, looking for a hole to put it in. (Many variations of thisalgorithm are possible, to deal with multiple areas holding di�erent-sized objects, and to avoid interminglingobjects from widely-dispersed areas.) For a more complete treatment of compacting algorithms, see [Knu69,CN83].2.4 Copying Garbage CollectionLike mark-compact (but unlike mark-sweep), copying garbage collection does not really \collect" garbage.Rather, it moves all of the live objects into one area, and the rest of the heap is then known to be avail-able because it contains only garbage. \Garbage collection" in these systems is thus only implicit, and someresearchers avoid applying that term to the process.Copying collectors, like marking-and-compacting collectors, move the objects that are reached by thetraversal to a contiguous area. While compacting collectors use a separate marking phase that traverses thelive data, copying collectors integrate the traversal of the data and the copying process, so that most objectsneed only be traversed once. Objects are moved to the contiguous destination area as they are reached by thetraversal. The work needed is proportional to the amount of live data (all of which must be copied).The term scavenging is applied to the copying traversal, because it consists of picking out the worthwhileobjects amid the garbage, and taking them away.A Simple Copying Collector: \Stop-and-Copy" Using Semispaces. A very common kind of copyinggarbage collector is the semispace collector [FY69] using the Cheney algorithm for the copying traversal [Che70].We will use this collector as a reference model for much of this paper.9In this scheme, the space devoted to the heap is subdivided into two contiguous semispaces. During normalprogram execution, only one of these semispaces is in use, as shown in Fig. 3. Memory is allocated linearlyupward through this \current" semispace as demanded by the executing program. This is much like allocationfrom a stack, or in a sliding compacting collector, and is similarly fast; there is no fragmentation problemwhen allocating objects of various sizes.When the running program demands an allocation that will not �t in the unused area of the currentsemispace, the program is stopped and the copying garbage collector is called to reclaim space (hence the term9 As a historical note, the �rst copying collector was Minsky's collector for Lisp 1.5 [Min63]. Rather than copyingdata from one area of memory to another, a single heap space was used. The live data were copied out to a �le,and then read back in, in a contiguous area of the heap space. On modern machines this would be unbearablyslow, because �le operations|writing and reading every live object|are now many orders of magnitude slower thanmemory operations. 9
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FROMSPACEFig. 3. A simple semispace garbage collector before garbage collection.\stop-and-copy"). All of the live data are copied from the current semispace (fromspace) to the other semispace(tospace). Once the copying is completed, the tospace semispace is made the \current" semispace, and programexecution is resumed. Thus the roles of the two spaces are reversed each time the garbage collector is invoked.(See Fig. 4.)Perhaps the simplest form of copying traversal is the Cheney algorithm [Che70]. The immediately-reachableobjects form the initial queue of objects for a breadth-�rst traversal. A \scan" pointer is advanced throughthe �rst object, location by location. Each time a pointer into fromspace is encountered, the referred-to-objectis transported to the end of the queue, and the pointer to the object is updated to refer to the new copy. The10
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FROMSPACEFig. 4. Semispace collector after garbage collection.free pointer is then advanced and the scan continues. This e�ects the \node expansion" for the breadth-�rsttraversal, reaching (and copying) all of the descendants of that node. (See Fig. 5. Reachable data structuresin fromspace are shown at the top of the �gure, followed by the �rst several states of tospace as the collectionproceeds|tospace is shown in linear address order to emphasize the linear scanning and copying.)Rather than stopping at the end of the �rst object, the scanning process simply continues through subse-quent objects, �nding their o�spring and copying them as well. A continuous scan from the beginning of thequeue has the e�ect of removing consecutive nodes and �nding all of their o�spring. The o�spring are copiedto the end of the queue. Eventually the scan reaches the end of the queue, signifying that all of the objects11
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Fig. 5. The Cheney algorithm of breadth-�rst copying. 12



that have been reached (and copied) have also been scanned for descendants. This means that there are nomore reachable objects to be copied, and the scavenging process is �nished.Actually, a slightly more complex process is needed, so that objects that are reached by multiple pathsare not copied to tospace multiple times. When an object is transported to tospace, a forwarding pointer isinstalled in the old version of the object. The forwarding pointer signi�es that the old object is obsolete andindicates where to �nd the new copy of the object. When the scanning process �nds a pointer into fromspace,the object it refers to is checked for a forwarding pointer. If it has one, it has already been moved to tospace,so the pointer it has been reached by is simply updated to point to its new location. This ensures that eachlive object is transported exactly once, and that all pointers to the object are updated to refer to the newcopy.E�ciency of Copying Collection. A copying garbage collector can be made arbitrarily e�cient if su�cientmemory is available [Lar77, App87]. The work done at each collection is proportional to the amount of livedata at the time of garbage collection. Assuming that approximately the same amount of data is live at anygiven time during the program's execution, decreasing the frequency of garbage collections will decrease thetotal amount of garbage collection e�ort.A simple way to decrease the frequency of garbage collections is to increase the amount of memory inthe heap. If each semispace is bigger, the program will run longer before �lling it. Another way of looking atthis is that by decreasing the frequency of garbage collections, we are increasing the average age of objects atgarbage collection time. Objects that become garbage before a garbage collection needn't be copied, so thechance that an object will never have to be copied is increased.Suppose, for example, that during a program run twenty megabytes of memory are allocated, but only onemegabyte is live at any given time. If we have two three-megabyte semispaces, garbage will be collected aboutten times. (Since the current semispace is one third full after a collection, that leaves two megabytes that canbe allocated before the next collection.) This means that the system will copy about half as much data as itallocates, as shown in the top part of Fig. 6. (Arrows represent copying of live objects between semispaces atgarbage collections.)On the other hand, if the size of the semispaces is doubled, 5 megabytes of free space will be availableafter each collection. This will force garbage collections a third as often, or about 3 or 4 times during the run.This straightforwardly reduces the cost of garbage collection by more than half, as shown in the bottom partof Fig. 6.2.5 Non-Copying Implicit CollectionRecently, Baker [Bak92] has proposed a new kind of non-copying collector that with some of the e�ciencyadvantages of a copying scheme. Baker's insight is that in a copying collector, the \spaces" of the collector arereally just a particular implementation of sets. Another implementation of sets could do just as well, providedthat it has similar performance characteristics. In particular, given a pointer to an object, it must be easyto determine which set it is a member of; in addition, it must be easy to switch the roles of the sets, just asfromspace and tospace roles are exchanged in a copy collector.Baker's non-copying system adds two pointer �elds and a \color" �eld to each object. These �elds areinvisible to the application programmer, and serve to link each hunk of storage into a doubly-linked list thatserves as a set. The color �eld indicates which set an object belongs to.The operation of this collector is simple, and isomorphic to the copy collector's operation. Chunks of freespace are initially linked to form a doubly-linked list, and are allocated simply by incrementing a pointer intothis list. The allocation pointer serves to divide the list into the part that has been allocated and the remaining\free" part. Allocation is fast because it only requires advancing this pointer to point at the next element ofthe free list. (Unlike the copying scheme, this does not eliminate fragmentation problems; supporting variablesized objects requires multiple free lists and may result in fragmentation of the available space.)When the free list is exhausted, the collector traverses the live objects and \moves" them from the allocatedset (which we could call the fromset) to another set (the toset). This is implemented by unlinking the objectfrom the doubly-linked fromset list, toggling its mark �eld, and linking it into the toset's doubly-linked list.13
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Fig. 6. Memory usage in a semispace GC, with 3 MB (top) and 6 MB (bottom) semispaces14



Just as in a copy collector, space reclamation is implicit. When all of the reachable objects have beentraversed and moved from the fromset to the toset, the fromset is known to contain only garbage. It istherefore a list of free space, which can immediately be put to use as a free list. (As we will explain in section3.3, Baker's scheme is actually somewhat more complex, because his collector is incremental.) The cost ofthe collection is proportional to the number of live objects, and the garbage ones are all reclaimed in smallconstant time.This scheme has both advantages and disadvantages compared to a copy collector. On the minus side,the per-object constants are probably a little bit higher, and fragmentation problems are still possible. Onthe plus side, the tracing cost for large objects is not as high. As with a mark-sweep collector, the wholeobject needn't be copied; if it can't contain pointers, it needn't be scanned either. Perhaps more importantlyfor many applications, this scheme does not require the actual language-level pointers between objects to bechanged, and this imposes fewer constraints on compilers. As we'll explain later, this is particularly importantfor parallel and real-time incremental collectors.2.6 Choosing Among Basic TechniquesTreatments of garbage collection algorithms in textbooks often stress asymptotic complexity, but all basicalgorithms have roughly similar costs, especially when we view garbage collection as part of the overall freestorage management scheme. Allocation and garbage collection are two sides of the basic memory reuse coin,and any algorithm incurs costs at allocation time, if only to initialize the �elds of new objects.Any of the e�cient collection schemes therefore has three basic cost components, which are (1) the initialwork required at each collection, such as root set scanning, (2) the work done at per unit of allocation(proportional to the amount of allocation, or the number of objects allocated) and (3) the work done duringgarbage detection (e.g., tracing).The latter two costs are usually similar, in that the amount of live data is usually some signi�cant percentageof the amount of garbage. Thus algorithms whose cost is proportional to the amount of allocation (e.g., mark-sweep) may be competitive with those whose cost is proportional to the amount of live data traced (e.g.,copying).For example, suppose that 10 percent of all allocated data survive a collection, and 90 percent never needto be traced. In deciding which algorithm is more e�cient, the asymptotic complexity is less important thanthe associated constants. If the cost of sweeping an object is ten times less than the cost of copying it, themark-sweep collector costs about the same as as copy collector. (If a mark-sweep collector's sweeping cost isbilled to the allocator, and it's small relative to the cost of initializing the objects, then it becomes obvious thatthe sweep phase is just not terribly expensive.) While current copying collectors appear to be more e�cientthan current mark-sweep collectors, the di�erence is not large for state-of-the art implementations.Further, real high-performance systems often use hybrid techniques to adjust tradeo�s for di�erent cat-egories of objects. Many high-performance copy collectors use a separate large object area [CWB86, UJ88],to avoid copying large objects from space to space. The large objects are kept \o� to the side" and usuallymanaged in-place by some variety of marking traversal and free list technique.A major point in favor of in-place collectors (such as mark-sweep and treadmill schemes) is the ability tomake them conservative with respect to data values that may be pointers or may not. This allows them tobe used for languages like C, or o�-the-shelf optimizing compilers [BW88, Bar88, BDS91], which can makeit di�cult or impossible to unambiguously identify all pointers at run time. A non-moving collector can beconservative because anything that looks like a pointer object can be left where it is, and the (possible) pointerto it doesn't need to be changed. In contrast, a copying collector must know whether a value is a pointer|andwhether to move the object and update the pointer. For example, if presumed pointers were updated, andsome were actually integers, the program would break because the integers would be mysteriously changed bythe garbage collector. 15



2.7 Problems with a Simple Garbage CollectorIt is widely known that the asymptotic complexity of copying garbage collection is excellent|the copying costapproaches zero as memory becomes very large. Treadmill collection shares this property, but other collectorscan be similarly e�cient if the constants associated with memory reclamation and reallocation are smallenough. In that case, garbage detection is the major cost.Unfortunately, it is di�cult in practice to achieve high e�ciency in a simple garbage collector, becauselarge amounts of memory are too expensive. If virtual memory is used, the poor locality of the allocationand reclamation cycle will generally cause excessive paging. (Every location in the heap is used before anylocation's space is reclaimed and reused.) Simply paging out the recently-allocated data is expensive for ahigh-speed processor [Ung84], and the paging caused by the copying collection itself may be tremendous, sinceall live data must be touched in the process.)It therefore doesn't generally pay to make the heap area larger than the available main memory. (For amathematical treatment of this tradeo�, see [Lar77].) Even as main memory becomes steadily cheaper, localitywithin cache memory becomes increasingly important, so the problem is simply shifted to a di�erent level ofthe memory hierarchy [WLM92].In general, we can't achieve the potential e�ciency of simple garbage collection; increasing the size ofmemory to postpone or avoid collections can only be taken so far before increased paging time negates anyadvantage.It is important to realize that this problem is not unique to copying collectors. All garbage collectionstrategies involve similar space-time tradeo�s|garbage collections are postponed so that garbage detectionwork is done less often, and that means that space is not reclaimed as quickly. On average, that increases theamount of memory wasted due to unreclaimed garbage.10While copying collectors were originally designed to improve locality, in their simple versions this improve-ment is not large, and their locality can in fact be worse than that of non-compacting collectors. These systemsmay improve the locality of reference to long-lived data objects, which have been compacted into a contiguousarea. However, this e�ect is swamped by the pattern of references due to allocation. Large amounts of memoryare touched between collections, and this alone makes them unsuitable for a virtual memory environment.The major locality problem is not with the locality of compacted data, or with the locality of the garbagecollection process itself. The problem is an indirect result of the use of garbage collection|by the time spaceis reclaimed and reused, it's likely to have been paged out, simply because too many other pages have beenallocated in between. Compaction is helpful, but the help is generally too little, too late. With a simplesemispace copy collector, locality is likely to be worse than that of a mark-sweep collector, simply because thecopy collector uses more total memory|only half the memory can be used between collections. Fragmentationof live data is not as detrimental as the regular reuse of two spaces.11The only way to have good locality is to ensure that memory is large enough to hold the regularly-reusedarea. (Another approach would be to rely on optimizations such as prefetching, but this is not feasible at thelevel of virtual memory|disks simply can't keep up with the rate of allocation because of the enormous speeddi�erential between RAM and disk.) Generational collectors address this problem by reusing a smaller amountof memory more often; they will be discussed in Sect. 4. (For historical reasons, is widely believed that onlycopying collectors can be made generational, but this is not the case. Generational mark-sweep collectors aresomewhat harder to construct, but they do exist and are quite practical [DWH+90].10 Deferred reference counting, like tracing collection, also trades space for time|in giving up continual incrementalreclamation to avoid spending CPU cycles in adjusting reference counts, one gives up space for objects that becomegarbage and are not immediately reclaimed. At the time scale on which memory is reused, the resulting localitycharacteristics must share basic performance tradeo� characteristics with generational collectors of the copying ormark-sweep varieties, which will be discussed later.11 Slightly more complicated copying schemes appear to avoid this problem [Ung84, WM89], but [WLM92] demonstratesthat cyclic memory reuse patterns can fare poorly in hierarchical memories because of recency-based (e.g., LRU)replacement policies. This suggests that freed memory should be reused in a LIFO fashion (i.e., in the opposite orderof its previous allocation), if the entire reuse pattern can't be kept in memory.16



Finally, the temporal distribution of a simple tracing collector's work is also troublesome in an interactiveprogramming environment; it can be very disruptive to a user's work to suddenly have the system becomeunresponsive and spend several seconds garbage collecting, as is common in such systems. For large heaps,the pauses may be on the order of seconds, or even minutes if a large amount of data is dispersed throughvirtual memory. Generational collectors alleviate this problem, because most garbage collections only operateon a subset of memory. Eventually they must garbage collect larger areas, however, and the pauses may beconsiderably longer. For real time applications, this may not be acceptable.3 Incremental Tracing CollectorsFor truly real-time applications, �ne-grained incremental garbage collection appears to be necessary. Garbagecollection cannot be carried out as one atomic action while the program is halted, so small units of garbagecollection must be interleaved with small units of program execution. As we said earlier, it is relatively easy tomake reference counting collectors incremental. Reference counting's problems with e�ciency and e�ectivenessdiscourage its use, however, and it is therefore desirable to make tracing (copying or marking) collectorsincremental.In most of the following discussion, the di�erence between copying and mark-sweep collectors is not par-ticularly important. The incremental tracing for garbage detection is more interesting than the incrementalreclamation of detected garbage.The di�culty with incremental tracing is that while the collector is tracing out the graph of reachabledata structures, the graph may change|the running program maymutate the graph while the collector \isn'tlooking." For this reason, discussions of incremental collectors typically refer to the running program as themutator [DLM+78]. (From the garbage collector's point of view, the actual application is merely a coroutineor concurrent process with an unfortunate tendency to modify data structures that the collector is attemptingto traverse.) An incremental scheme must have some way of keeping track of the changes to the graph ofreachable objects, perhaps re-computing parts of its traversal in the face of those changes.An important characteristic of incremental techniques is their degree of conservatism with respect tochanges made by the mutator during garbage collection. If the mutator changes the graph of reachable objects,freed objects may or may not be reclaimed by the garbage collector. Some 
oating garbage may go unreclaimedbecause the collector has already categorized the object as live before the mutator frees it. This garbage isguaranteed to be collected at the next cycle, however, because it will be garbage at the beginning of the nextcollection.3.1 Tricolor MarkingThe abstraction of tricolor marking is helpful in understanding incremental garbage collection. Garbage collec-tion algorithms can be described as a process of traversing the graph of reachable objects and coloring them.The objects subject to garbage collection are conceptually colored white, and by the end of collection, thosethat will be retained must be colored black. When there are no reachable nodes left to blacken, the traversalof live data structures is �nished.In a simple mark-sweep collector, this coloring is directly implemented by setting mark bits|objects whosebit is set are black. In a copy collector, this is the process of moving objects from fromspace to tospace|unreached objects in fromspace are considered white, and objects moved to tospace are considered black.The abstraction of coloring is orthogonal to the distinction between marking and copying collectors, and isimportant for understanding the basic di�erences between incremental collectors.In incremental collectors, the intermediate states of the coloring traversal are important, because of ongoingmutator activity|the mutator can't be allowed to change things \behind the collector's back" in such a waythat the collector will fail to �nd all reachable objects.To understand and prevent such interactions between the mutator and the collector, it is useful to introducea third color, grey, to signify that an object has been reached by the traversal, but that its descendants maynot have been. That is, as the traversal proceeds outward from the roots, objects are initially colored grey.17



When they are scanned and pointers to their o�spring are traversed, they are blackened and the o�spring arecolored grey.In a copying collector, the grey objects are the objects in the unscanned area of tospace|the ones betweenthe scan and free pointers. Objects that have been passed by the scan pointer are black. In a mark-sweepcollector, the grey objects correspond to the stack or queue of objects used to control the marking traversal,and the black objects are the ones that have been removed from the queue. In both cases, objects that havenot been reached yet are white.Intuitively, the traversal proceeds in a wavefront of grey objects, which separates the white (unreached)objects from the black objects that have been passed by the wave|that is, there are no pointers directly fromblack objects to white ones. This abstracts away from the particulars of the traversal algorithm|it may bedepth-�rst, breadth-�rst, or just about any kind of exhaustive traversal. It is only important that a well-de�nedgrey fringe be identi�able, and that the mutator preserve the invariant that no black object hold a pointerdirectly to a white object.The importance of this invariant is that the collector must be able to assume that it is \�nished with" blackobjects, and can continue to traverse grey objects and move the wavefront forward. If the mutator creates apointer from a black object to a white one, it must somehow coordinate with the collector, to ensure that thecollector's bookkeeping is brought up to date.Figure 7 demonstrates this need for coordination. Suppose the object A has been completely scanned (andtherefore blackened); its descendants have been reached and greyed. Now suppose that the mutator swaps thepointer from A to C with the pointer from B to D. The only pointer to D is now in a �eld of A, which thecollector has already scanned. If the traversal continues without any coordination, C will be reached again(from B), and D will never be reached at all.Incremental approaches There are two basic approaches to coordinating the collector with the mutator.One is to use a read barrier, which detects when the mutator attempts to access a pointer to a white object,and immediately colors the object grey; since the mutator can't read pointers to white objects, it can't installthem in black objects. The other approach is more direct, and involves a write barrier|when the programattempts to write a pointer into an object, the write is trapped or recorded.Write barrier approaches, in turn, fall into two di�erent categories, depending on which aspect of theproblem they address. To foil the garbage collector's marking traversal, it is necessary for the mutator to 1)write a pointer to a white object into a black object and 2) destroy the original pointer before the collectorsees it.If the �rst condition (writing the pointer into a black object) does not hold, no special action is needed|ifthere are other pointers to the white object from grey objects, it will be retained, and if not, it is garbageand needn't be retained anyway. If the second condition (obliterating the original path to the object) does nothold, the object will be reached via the original pointer and retained. The two write-barrier approaches focuson these two aspects of the problem.Snapshot-at-beginning collectors ensure that the second condition cannot happen|rather than allowingpointers to be simply overwritten, they are �rst saved so that the collector can �nd them. Thus no paths towhite objects can be broken without providing another path to the object for the garbage collector.Incremental update collectors are still more direct in dealing with these troublesome pointers. Rather thansaving copies of all pointers that are overwritten (because they might have already been copied into blackobjects) they actually record pointers stored into black objects, and catch the troublesome pointers at theirdestination, rather than their source. That is, if a pointer to a white object is copied into a black object, thatnew copy of the pointer will be found. Conceptually, the black object (or part of it) is reverted to grey when themutator \undoes" the collector's traversal. (Alternatively, the pointed-to object may be greyed immediately.)This ensures that the traversal is updated in the face of mutator changes.3.2 Baker's Incremental Copying.The best-known real-time garbage collector is Baker's incremental copying scheme [Bak78]. It is an adaptationof the simple copy collection scheme described in Sect. 2.5, and uses a read barrier for coordination with the18
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Fig. 7. A violation of the coloring invariant.mutator. For the most part, the copying of data proceeds in the Cheney (breadth-�rst) fashion, by advancingthe scan pointer through the unscanned area of tospace and moving any referred-to objects from fromspace.This background scavenging is interleaved with mutator operation, however.An important feature of Baker's scheme is its treatment of objects allocated by the mutator during in-cremental collection. These objects are allocated in tospace and are treated as though they had already beenscanned|i.e., they are assumed to be live. In terms of tricolor marking, new objects are black when allocated,and none of them can be reclaimed; they are never reclaimed until the next garbage collection cycle.1212 Baker suggests copying old live objects into one end of tospace, and allocating new objects in the other end. The19



In order to ensure that the scavenger �nds all of the live data and copies it to tospace before the free areain newspace is exhausted, the rate of copy collection work is tied to the rate of allocation. Each time an objectis allocated, an increment of scanning and copying is done.In terms of tricolor marking, the scanned area of tospace contains black objects, and the copied butunscanned objects (between the scan and free pointer) are grey. As-yet unreached objects in fromspace arewhite. The scanning of objects (and copying of their o�spring) moves the wavefront forward.In addition to the background scavenging, other objects may be copied to tospace as needed to ensure thatthe basic invariant is not violated|pointers into fromspace must not be stored into objects that have alreadybeen scanned, undoing the collector's work.Baker's approach is to couple the collector's copying traversal with the mutator's traversal of data struc-tures. The mutator is never allowed to see pointers into fromspace, i.e., pointers to white objects. Wheneverthe mutator reads a (potential) pointer from the heap, it immediately checks to see if it is a pointer intofromspace; if so, the referent is copied to tospace, i.e., its color is changed from white to grey. In e�ect, thisadvances the wavefront of greying just ahead of the actual references by the mutator, keeping the mutatorinside the wavefront.13It should be noted that Baker's collector itself changes the graph of reachable objects, in the process ofcopying. The read barrier does not just inform the collector of changes by the mutator, to ensure that objectsaren't lost; it also shields the mutator from viewing temporary inconsistencies created by the collector. If thiswere not done, the mutator might encounter two di�erent pointers to versions of the same object, one of themobsolete.This shielding of the mutator from white objects has come to be called a read barrier, because it preventspointers to white objects from being read by the program at all.The read barrier may be implemented in software, by preceding each read (of a potential pointer from theheap) with a check and a conditional call to the copying-and-updating routine. (Compiled code thus containsextra instructions to implement the read barrier.) Alternatively, it may be implemented with specializedhardware checks and/or microcoded routines.The read barrier is quite expensive on stock hardware, because in the general case, any load of a pointermust check to see if the pointer points to a fromspace (white) object; if so, it must execute code to move theobject to tospace and update the pointer. The cost of these checks is high on conventional hardware, becausethey occur very frequently. Lisp Machines have special purpose hardware to detect pointers into fromspaceand trap to a handler[Gre84, Moo84, Joh91], but on conventional machines the checking overhead is in thetens of percent for a high performance system.Brooks has proposed a variation on Baker's scheme, where objects are always referred to via an indirection�eld embedded in the object itself [Bro84]. If an object is valid, its indirection �eld points to itself. If it'san obsolete version in tospace, its indirection pointer points to the new version. Unconditionally indirectingis cheaper than checking for indirections, but would still incur overheads in the tens of percent for a high-performance system. (A variant of this approach has been used by North and Reppy in a concurrent garbagecollector [NR87].) Zorn takes a di�erent approach to reducing the read barrier overhead, using knowledge ofimportant special cases and special compiler techniques. Still, the time overheads are on the order of twentypercent [Zor89].3.3 The TreadmillRecently, Baker has proposed a non-copying version of his scheme, which uses doubly-linked lists (and per-object color �elds) to implement the sets of objects of each color, rather than separate memory areas. Bytwo occupied areas of tospace thus grow toward each other.13 Nilsen's variant of Baker's algorithm updates the pointers without actually copying the objects|the copying islazy, and space in tospace is simply reserved for the object before the pointer is updated [Nil88]. This makes iteasier to provide smaller bounds on the time taken by list operations, and to gear collector work to the amount ofallocation|including guaranteeing shorter pauses when smaller objects are allocated.20



avoiding the actual moving of objects and updating of pointers, the scheme puts fewer restrictions on otheraspects of language implementation.14
New

To
From

Free

Allocation

ScanningFig. 8. Treadmill collector during collection.This non-copying scheme preserves the essential e�ciency advantage of copy collection, by reclaiming spaceimplicitly. (As described in Sect. 2.5, unreached objects on the allocated list can be reclaimed by appendingthe remainder of that list to the free list.) The real-time version of this scheme links the various lists into acyclic structure, as shown in Fig. 8. This cyclic structure is divided into four sections.The new list is where allocation of new objects occurs during garbage collection|it is contiguous with thefree list, and allocation occurs by advancing the pointer that separates them. At the beginning of garbagecollection, the new segment is empty.14 In particular, it is possible to deal with compilers that do not unambiguously identify pointer variables in the stack,making it impossible to use simple copy collection. 21



The from list holds objects that were allocated before garbage collection began, and which are subject togarbage collection. As the collector and mutator traverse data structures, objects are moved from the from listto the to list. The to list is initially empty, but grows as objects are \unsnapped" (unlinked) from the fromlist (and snapped into the to list) during collection.The new list contains new objects, which are allocated black. The to-list contains both black objects(which have been completely scanned) and grey ones (which have been reached but not scanned). Note theisomorphism with the copying algorithm|even an analogue of the Cheney algorithm can be used. It is onlynecessary to have a scan pointer into the from list and advance it through the grey objects.Eventually, all of the reachable objects in the from list have been moved to the to list, and scanned foro�spring. When no more o�spring are reachable, all of the objects in the to-list are black, and the remainingobjects in the from list are known to be garbage. At this point, the garbage collection is complete. The fromlist is now available, and can simply be merged with the free list. The to list and the new list both hold objectsthat were preserved, and they can be merged to form the new to-list at the next collection.15The state is very similar to the beginning of the previous cycle, except that the segments have \moved"partway around the cycle|hence the name \treadmill."Baker describes this algorithm as being isomorphic to his original incremental copying algorithm, presum-ably including the close coupling between the mutator and the collector, i.e., the read barrier.Conservatism in Baker's scheme. Baker's garbage collector uses a somewhat conservative approximationof true liveness in two ways.16 The most obvious one is that objects allocated during collection are assumedto be live, even if they die before the collection is �nished. The second is that pre-existing objects maybecome garbage after having been reached by the collector's traversal, and they will not be reclaimed|oncean object has been greyed, it will be considered live until the next garbage collection cycle. On the otherhand, if objects become garbage during collection, and all paths to those objects are destroyed before beingtraversed, then they will be reclaimed. That is, the mutator may overwrite a pointer from a grey object,destroying the only path to one or more white objects and ensuring that the collector will not �nd them.Thus Baker's incremental scheme incrementally updates the reachability graph of pre-existing objects, onlywhen grey objects have pointers overwritten. Overwriting pointers from black objects has no e�ect, however,because their referents are already grey. The degree of conservatism (and 
oating garbage) thus depends onthe details of the collector's traversal and of the program's actions.3.4 Snapshot-at-Beginning write-barrier algorithmsIf a non-copying collector is used, the use of a read barrier is an unnecessary expense; there is no need to protectthe mutator from seeing an invalid version of a pointer. Write barrier techniques are cheaper, because heapwrites are several times less common than heap reads. Snapshot-at-beginning algorithms use a write barrierto ensure that no objects ever become inaccessible to the garbage collector while collection is in progress.Conceptually, at the beginning of garbage collection, a copy-on-write virtual copy of the graph of reachabledata structures is made. That is, the graph of reachable objects is �xed at the moment garbage collectionstarts, even though the actual traversal proceeds incrementally.Perhaps the simplest and best-known snapshot collection algorithm is Yuasa's [Yua90]. If a location iswritten to, the overwritten value is �rst saved and pushed on a marking stack for later examination. Thisguarantees that no objects will become unreachable to the garbage collector traversal|all objects live at thebeginning of garbage collection will be reached, even if the pointers to them are overwritten. In the exampleshown in Fig. 7, the pointer from B to D is pushed onto the stack when it is overwritten with the pointer toC.15 This discussion is a bit oversimpli�ed; Baker uses four colors, and whole lists can have their colors changed instan-taneously by changing the sense of the bit patterns, rather than the patterns themselves.16 This kind of conservatism is not to be confused with the conservative treatment of pointers that cannot be unambigu-ously identi�ed. (For a more complete and formal discussion of various kinds of conservatism in garbage collection,see [DWH+90].) 22



Yuasa's scheme has a large advantage over Baker's on stock hardware, because only heap pointer writes mustbe treated specially to preserve the garbage collector invariants. Normal pointer dereferencing and comparisondoes not incur any extra overhead.On the other hand, Yuasa's scheme is more conservative than Baker's. Not only are all objects allocatedduring collection retained, but no objects can be freed during collection|all of the overwritten pointers arepreserved and traversed. These objects are reclaimed at the next garbage collection cycle.3.5 Incremental Update Write-Barrier AlgorithmsWhile both are write-barrier algorithms, snapshot-at-beginning and incremental update algorithms are quitedi�erent. Unfortunately, incremental update algorithms have generally been cast in terms of parallel systems,rather than as incremental schemes for serial processing; perhaps due to this, they have been largely overlookedby implementors targeting uniprocessors.Perhaps the best known of these algorithms is due to Dijkstra et al. [DLM+78]. (This is similar to thescheme developed independently by Steele [Ste75], but simpler because it does not deal with compacti�cation.)Rather than retaining everything that's in a snapshot of the graph at the beginning of garbage collection, itheuristically (and somewhat conservatively) attempts to retain the objects that are live at the end of garbagecollection. Objects that die during garbage collection|and before being reached by the marking traversal|arenot traversed and marked.To avoid the problem of pointers escaping into reachable objects that have already been scanned, suchcopied pointers are caught at their destination, rather than their source. Rather than noticing when a pointerescapes from a location that hasn't been traversed, it notices when the pointer escapes into an object that hasalready been traversed. If a pointer is overwritten without being copied elsewhere, so much the better|theobject is garbage, so it might as well not get marked.If the pointer is installed into an object already determined to be live, that pointer must be taken intoaccount|it has now been incorporated into the graph of reachable data structures. Such pointer stores arerecorded by the write barrier|the collector is noti�ed which black objects may hold pointers to white objects,in e�ect reverting those objects to grey. Those formerly-black objects will be scanned again before the garbagecollection is complete, to �nd any live objects that would otherwise escape. (This process may iterate, becausemore black objects may be reverted while the collector is in the process of traversing them. The traversal isguaranteed to complete, however, and the collector eventually catches up with the mutator.)Objects that become garbage during garbage collection may be reclaimed at the end of that garbagecollection, not the next one. This is similar to Baker's read-barrier algorithm in its treatment of pre-existingobjects|they are not preserved if they become garbage before being reached by the collector.It is less conservative than Baker's and Yuasa's algorithms in its treatment of objects allocated by themutator during collocation, however. Baker's and Yuasa's schemes assume such newly-created objects arelive, because pointers to them may get installed into objects that have already been reached by the collector'straversal. In terms of tricolor marking, objects are allocated \black", rather than white|they are conservativelyassumed to be part of the graph of reachable objects. (In Baker's algorithm, there is no write barrier to detectwhether they have been incorporated into the graph or not.)In the Dijkstra et al. scheme, objects are assumed not to be reachable when they're allocated. In terms oftricolor marking, objects are allocated white, rather than black. At some point, the stack must be traversedand the objects that are reachable at that time are marked and therefore preserved.We believe that this has a potentially signi�cant advantage over Baker's or Yuasa's schemes. Most objectsare short-lived, so if the collector doesn't reach those objects early in its traversal, they're likely never to bereached, and instead to be reclaimed very promptly. Compared to Baker's or Yuasa's scheme, there's an extracomputational cost|by assuming that all objects allocated during collection are reachable, those schemesavoid the cost of traversing and marking those that actually are reachable. On the other hand, there's a spacebene�t with the incremental update scheme|the majority of those objects can be reclaimed at the end ofa collection, which is likely to make it worth traversing the others. (In Steele's algorithm, some objects areallocated white and some are not, depending on the colors of their referents [Ste75]. This heuristic attempts23



to allocate short-lived objects white to reclaim their space quickly, while treating other objects conservativelyto avoid traversing them. The cost of this technique is not quanti�ed, and its bene�ts are unknown.)3.6 Choosing Among Incremental TechniquesIn choosing an incremental collection design, it is instructive to keep in mind the abstraction of tricolormarking, as distinct from mechanisms such as mark-sweep or copy collection. For example, Brooks' collector[Bro84] is actually a write barrier algorithm, even though Brooks describes it as an optimization of Baker'sscheme.17 Similarly, Dawson's[Daw82] copy collection scheme is cast as a variant of Baker's, but it is actuallyan incremental update scheme, similar to Dijkstra et al.'s; objects are allocated in fromspace, i.e., white.The choice of a read- or write-barrier scheme is likely to be made on the basis of the available hardware.Without specialized hardware support, a write barrier appears to be easier to implement e�ciently, becauseheap pointer writes are much less common than pointer traversals.Appel, Ellis and Li [AEL88] use virtual memory (pagewise) access protection facilities as a coarse approx-imation of Baker's read barrier[AEL88, AL91, Wil91]. Rather than checking each load to see if a pointer tofromspace is being loaded, the mutator is simply not allowed to see any page that might contain such a pointer.Pointers in the scanned area of tospace are guaranteed to contain only pointers into tospace. Any pointers fromtospace to fromspace must be from the unscanned area, so the collector simply access-protects the unscannedarea, i.e., the grey objects. When the mutator accesses a protected page, a trap handler immediately scans thewhole page, �xing up all the pointers (i.e., blackening all of the objects in the page); referents in fromspaceare relocated to tospace (i.e., greyed) and access-protected.Unfortunately this scheme fails to provide meaningful real-time guarantees in the general case. (It doessupport concurrent collection, however, and greatly reduces the cost of the read barrier.) In the worst case, eachpointer traversal may cause the scanning of a page of tospace until the whole garbage collection is complete.18Of write barrier schemes, incremental update appears to be more e�ective than snapshot approaches|because most short-lived objects are reclaimed quickly|but with an extra cost in traversing newly-allocatedlive objects. This cost might be reduced by carefully choosing the ordering of root traversal, traversing themost stable structures �rst to avoid having the collector's work undone by mutator changes.Careful attention should be paid to write barrier implementation. Boehm, Demers and Shenker's [BDS91,Boe91] incremental update algorithm uses virtual memory dirty bits as a coarse pagewise write barrier. Allblack objects in a page must be re-scanned if the page is dirtied again before the end of a collection. (Aswith Appel, Ellis and Li's copy collector, this coarseness sacri�ces real-time guarantees, while supportingparallelism. It also allows the use of o�-the-shelf compilers that don't emit write barrier instructions alongwith heap writes.)In a system with compiler support for garbage collection, a list of stored-into locations can be kept, or dirtybits can maintained (in software) for small areas of memory, to reduce scanning costs and bound the timespent updating the marking traversal. This has been done for other reasons in generational garbage collectors,as we will discuss in Sect. 4.4 Generational Garbage CollectionGiven a realistic amount of memory, e�ciency of simple copying garbage collection is limited by the fact thatthe system must copy all live data at a collection. In most programs in a variety of languages,most objects live avery short time, while a small percentage of them live much longer [LH83, Ung84, Sha88, Zor90, DeT90, Hay91].While �gures vary from language to language and program to program, usually between 80 and 98 percent17 The use of uniform indirections may be viewed as avoiding the need for a Baker-style read barrier|the indirectionsisolate the collector from changes made by the mutator, allowing them to be decoupled. The actual coordination, interms of tricolor marking, is through a write barrier.18 Ralph Johnson has improved on this scheme by incorporating lazier copying of objects to fromspace [Joh92]. Thisdecreases the maximum latency, but in the (very unlikely) worst case a page may still be scanned at each pointertraversal until a whole garbage collection has been done \the hard way".24



of all newly-allocated objects die within a few million instructions, or before another megabyte has beenallocated; the majority of objects die even more quickly, within tens of kilobytes of allocation.(Heap allocation is often used as a measure of program execution, rather than wall clock time, for tworeasons. One is that it's independent of machine and implementation speed|it varies appropriately with thespeed at which the program executes, which wall clock time does not; this avoids the need to continually citehardware speeds.19 It is also appropriate to speak in terms of amounts allocated for garbage collection studiesbecause the time between garbage collections is largely determined by the amount of memory available.20Future improvements in compiler technology may reduce rates of heap allocation by putting more \heap"objects on the stack; this is not yet much of a problem for experimental studies, because most current state-of-the-art compilers don't do much of this kind of lifetime analysis.)Even if garbage collections are fairly close together, separated by only a few kilobytes of allocation, mostobjects die before a collection and never need to be copied. Of the ones that do survive to be copied once,however, a large fraction survive through many collections. These objects are copied at every scavenge, overand over, and the garbage collector spends most of its time copying the same old objects repeatedly. This isthe major source of ine�ciency in simple garbage collectors.Generational collection [LH83] avoids much of this repeated copying by segregating objects into multipleareas by age, and scavenging areas containing older objects less often than the younger ones. Once objects havesurvived a small number of scavenges, they are moved to a less frequently scavenged area. Areas containingyounger objects are scavenged quite frequently, because most objects there will generally die quickly, freeingup space; copying the few that survive doesn't cost much. These survivors are advanced to older status aftera few scavenges, to keep copying costs down.(For historical reasons and simplicity of explanation, we will focus on generational copying collectors. Thechoice of copying or marking collection is essentially orthogonal to the issue of generational collection, however[DWH+90].)4.1 Multiple Subheaps with Varying Scavenge FrequenciesConsider a generational garbage collector based on the semispace organization: memory is divided into areasthat will hold objects of di�erent approximate ages, or generations; each generation's memory is further dividedinto semispaces. In Fig. 9 we show a simple generational scheme with just two age groups, a New generationand an Old generation. Objects are allocated in the New generation, until its current semispace is full. Thenthe New generation (only) is scavenged, copying its live data into the other semispace, as shown in Fig. 10.If an object survives long enough to be considered old, it can be copied out of the new generation and intothe old, rather than back into the other semispace. This removes it from consideration by single-generationscavenges, so that it is no longer copied at every scavenge. Since relatively few objects live this long, oldmemory will �ll much more slowly than new. Eventually, old memory will �ll up and have to be garbagecollected as well. Figure 11 shows the general pattern of memory use in this simple generational scheme. (Notethe �gure is not to scale|the younger generation is typically several times smaller than the older one.)The number of generations may be greater than two, with each successive generation holding older objectsand being scavenged considerably less often. (Tektronix 4406 Smalltalk is such a generational system, usingsemispaces for each of eight generations [CWB86].)4.2 Detecting Intergenerational ReferencesIn order for this scheme to work, it must be possible to scavenge the younger generation(s) without scavengingthe older one(s). Since liveness of data is a global property, however, old-memory data must be taken into19 One must be careful, however, not to interpret it as the ideal abstract measure. For example, rates of heap allo-cation are somewhat higher in Lisp and Smalltalk, because more control information and/or intermediate data ofcomputations may be passed as pointers to heap objects, rather than as structures on the stack.20 Allocation-relative measures are still not the absolute bottom-line measure of garbage collector e�ciency, though,because decreasing work per unit of allocation is not nearly as important if programs don't allocate much; conversely,smaller percentage changes in garbage collection work mean more for programs whose memory demands are higher.25
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Fig. 9. A generational copying garbage collector before garbage collection.26
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Fig. 10. Generational collector after garbage collection. 27
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Fig. 11. Memory use in a generational copy collector with semispaces for each generation.
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account. For example, if there is a pointer from old memory to new memory, that pointer must be found atscavenge time and used as one of the roots of the traversal. (Otherwise, an object that is live may not bepreserved by the garbage collector, or the pointer may simply not be updated appropriately when the objectis moved. Either event destroys the integrity and consistency of data structures in the heap.)In the original generational collection scheme [LH83] scheme, no pointer in old memory may point directlyto an object in new memory; instead it must point to a cell in an indirection table, which is used as partof the root set. Such indirections are transparent to the user program. This technique was implemented onLisp machines such as the MIT machines [Gre84] and Texas Instruments Explorer [Cou88]. (There are minordi�erences between the two, but the principles are the same.21)Note that other techniques are often more appropriate, especially on stock hardware. Using indirectiontables introduces overhead similar to that of Baker's read barrier. A pointer recording technique can be usedinstead. Rather than indirecting pointers from old objects to young ones, normal (direct) pointers are allowed,but the locations of such pointers are noted so that they can be found at scavenge time. This requires somethinglike a write barrier [Ung84, Moo84]; that is, the running program cannot freely modify the reachability graphby storing pointers into objects in older generation.The write barrier may do checking at each store, or it may be as simple as maintaining dirty bits andscanning dirty areas at collection time [Sha88, Sob88, WM89, Wil90, HMS92].22; the same mechanism mightsupport real-time incremental collection as well.The important point is that all references from old to new memory must be located at scavenge time, andused as roots for the copying traversal.Using these intergenerational pointers as roots ensures that all reachable objects in the younger generationare actually reached by the collector; in the case of a copy collector, it ensures that all pointers to movedobjects are appropriately updated.As in an incremental collector, this use of a write barrier results in a conservative approximation of trueliveness; any pointers from old to new memory are used as roots, but not all of these roots are necessarily livethemselves. An object in old memory may already have died, but that fact is unknown until the next time oldmemory is scavenged. Thus some garbage objects may be preserved because they are referred to from objectsthat are 
oating (undetected) garbage. This appears not to be a problem in practice [Ung84, UJ88].It would also be possible to track all pointers from new memory into old memory, allowing old memoryto be scavenged independently of new memory. This is more costly, however, because there are typicallymany more pointers from new to old than from old to new. This is a consequence of the way references aretypically created|by creating a new object that refers to other objects which already exist. Sometimes apointer to a new object is installed in an old object, but this is considerably less common. This asymmetricaltreatment allows allows object-creating code (like Lisp's frequently-used cons operation) to skip the recordingof intergenerational pointers. Only non-initializing stores into objects must be checked for intergenerationalreferences; writes that initialize objects in the youngest generation can't create pointers into younger ones.Even if new-to-old pointers are not recorded, it may still be feasible to scavenge a generation withoutscavenging newer ones. In this case, all data in the newer generations may be considered possible roots, andthey may simply be scanned for pointers [LH83]. While this scanning consumes time proportional to theamount of data in the newer generations, each generation is usually considerably smaller than the next, andthe cost may be small relative to the cost of actually scavenging the older generation. (Scanning the data inthe newer generation may be preferable to scavenging both generations, because scanning is generally fasterthan copying; it may also have better locality.)The cost of recording intergenerational pointers is typically proportional to the rate of program execution21 The main di�erence is that the original scheme used per-generation entry tables, indirecting and isolating the pointersinto a generation. The Explorer used exit tables, indirecting the pointers out of each generation; for each generation,there is a separate exit table for pointers into each younger generation[Cou88].22 Ungar and Chambers' improvement [Cha92], of our \card marking" scheme [WM89, Wil90] decreases the cost perheap write by using whole bytes as dirty bits. Given the byte write instructions available on common architectures,the overhead is only three instructions per potential pointer store, at an increase in bitmap size and per-garbagecollection scanning cost. 29



i.e., it's not particularly tied to the rate of object creation. For some programs, it may be the major cost ofgarbage collection, because several instructions must be executed for every potential pointer store into theheap. This may slow program execution down by several percent. (It is interesting to note that this pointerrecording is essentially the same as that required for a write barrier incremental scheme; the same cost mayserve both purposes.)Within the framework of the generational strategy we've outlined, several important questions remain:1. Advancement policy. How long must an object survive in one generation before it is advanced to the next?[Ung84, WM89]2. Heap organization. How should storage space be divided and used between generations, and within a gen-eration [Moo84, Ung84, Sha88, WM89]? How does the resulting reuse pattern a�ect locality at the virtualmemory level [Ung84, Zor89, WM89], and at the level of high-speed cache memories [Zor91, WLM92]?3. Traversal algorithms. In a tracing collector, the traversal of live objects may have an important impacton locality. In a copying collector, objects are also reordered in memory as they are reached by the copycollector. What a�ect does this have on locality, and what traversal yields the best results [Bla83, Sta84,And86, WLM91]?4. Collection scheduling. For a non-incremental collector, how might we avoid or mitigate the e�ect of disrup-tive pauses, especially in interactive applications [Ung84, WM89]? Can we improve e�ciency by careful\opportunistic"scheduling [WM89, Hay91]? Can this be adapted to incremental schemes to reduce 
oatinggarbage?5. Intergenerational references. Since it must be possible to scavenge younger generations without scavengingthe older ones, we must be able to �nd the live pointers from older generations into the ones we'rescavenging. What is the best way to do this [WM89, BDS91, App89b, Wil90]?5 ConclusionsRecent advances in garbage collection technology make automatic storage reclamation a�ordable for use inhigh-performance systems. Even relatively simple garbage collectors' performance is often competitive withconventional explicit storage management [App87, Zor92]. Generational techniques reduce the basic costs anddisruptiveness of collection by exploiting the empirically observed tendency of objects to die young; stockhardware incremental techniques may even make this relatively inexpensive for hard real-time systems.We have discussed the basic operation of several kinds of garbage collectors, to provide a framework forunderstanding current research in the �eld. A key point is that standard textbook analyses of garbage col-lection algorithms usually miss the most important characteristics of collectors|namely, the constant factorsassociated with the various costs, including locality e�ects. These factors require garbage collection designersto take detailed implementation issues into account, and be very careful in their choices of features.Features also interact in important ways. Fine-grained incremental collection is unnecessary in most systemswithout hard real-time constraints. Coarser incremental techniques may be su�cient, because the modest pausetimes are acceptable [AEL88, BDS91], and the usually-short pauses of a stop-and-collect generational systemmay be acceptable enough for many systems [Ung84, WM89]. (On the other hand, the write barrier supportfor generational garbage collection could also support an incremental update scheme for incremental collection;if this recording is cheap and precise enough, it might support �ne-grained real-time collection at little cost.)In this introductory survey, we have not addressed the increasingly important areas of parallel [Ste75,KS77, DLM+78, NR87, AEL88, SS91] and distributed [LQP92, RMA92, JJ92, PS92] collection; we have alsogiven insu�cient coverage of conservative collectors, which can be used with systems not originally designedfor garbage collection [BW88, Bar88, Ede90, Wen90, WH91]. These developments have considerable promisefor making garbage collection widely available and practical; we hope that we've laid a proper foundation fordiscussing them, by clarifying the basic issues. 30
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