Compilers

Intermediate Representations and Data-Flow Analysis

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)

A bit more detail

 Intermediate representations and code generation

Low-level IR

- Linear stream of *abstract instructions*
- Instruction: single operation and assignment

$$x = y \text{ op } z$$
 $x \leftarrow y \text{ op } z$ x, y, z

• Must break down high-level constructs

$$z = x - 2 * y$$

- Introduce temps as necessary: called virtual registers
- Simple control-flow
 - Label and goto

- What are advantages?
 - Introduced names are *implicit*, not *explicit*
 - Simple to generate and execute code
 - Compact form who cares about code size?
 - Embedded systems
 - Systems where code is transmitted (the 'Net)

Towards code generation

Motivating Example: Dead code elimination

• Idea:

• Remove a computation if result is never used

Safety

- Variable is dead if it is never used after defined
- Remove code that assigns to dead variables
- This may, in turn, create more dead code
 - Dead-code elimination usually works transitively

• Another example:

Which statements can be safely removed?

- Conditions:
 - Computations whose value is never used
 - Obvious for straight-line code
 - What about control flow?

• With if-then-else:

Which statements are can be removed?

- Which statements are dead code?
 - What if "c" is false?
 - Dead only on some paths through the code

• And a loop:

Which statements are can be removed?

• Now which statements are dead code?

• And a loop:

Which statements are can be removed?

- Statement "x = y+1" not dead
- What about "z = 1"?

Low-level IR

Most optimizations performed in low-level IR

- Labels and jumps
- No explicit loops

• Even harder to see possible paths

Optimizations and control flow

- Dead code is *flow sensitive*
 - Not obvious from program

Dead code example: are there any possible paths that make use of the value?

- Must characterize all possible dynamic behavior
- Must verify conditions at compile-time
- Control flow makes it hard to extract information
 - High-level: different kinds of control structures
 - Low-level: control-flow hard to infer
- Need a unifying data structure

Control flow graph

- Control flow graph (CFG):
 - a graph representation of the program
 - Includes both computation and control flow
 - Easy to check control flow properties
 - Provides a framework for global optimizations and other compiler passes
- Nodes are *basic blocks*
 - Consecutive sequences of non-branching statements
- Edges represent control flow
 - From jump to a label
 - Each block may have multiple incoming/outgoing edges

Program

Control flow graph

}

Ζ

Multiple program executions

- CFG models all program executions
- An actual execution is a path through the graph
- Multiple paths: multiple possible executions
 - How many?

Control flow graph

Execution 1

- CFG models all program executions
- Execution 1:
 - c is true
 - Program executes BB₁, BB₂, and BB₄

Execution 2

- CFG models all program executions
- Execution 2:
 - c is false
 - Program executes BB₁, BB₃, and BB₄

Basic blocks

• Idea:

- Once execution enters the sequence, all statements (or instructions) are executed
- Single-entry, single-exit region

Details

- Starts with a label
- Ends with one or more branches
- Edges may be labeled with predicates *May include special categories of edges*
 - Exception jumps
 - Fall-through edges
 - Computed jumps (jump tables)

Building the CFG

• Two passes

- First, group instructions into basic blocks
- Second, analyze jumps and labels
- How to identify basic blocks?
 - Non-branching instructions
 Control cannot flow out of a basic block without a jump
 - Non-label instruction
 - Control cannot enter the middle of a block without a label

Basic blocks

- Basic block starts:
 - At a label
 - After a jump
- Basic block ends:
 - At a jump
 - Before a label

Basic blocks

- Basic block starts:
 - At a label
 - After a jump
- Basic block ends:
 - At a jump
 - Before a label

• Note: order still matters

label1:

jumpifnot p label2

$$\mathbf{x} = \mathbf{y} + \mathbf{1}$$

$$\mathbf{y} = \mathbf{2} \star \mathbf{z}$$

 $\mathbf{x} = \mathbf{y} + \mathbf{z}$

label3:

$$z = 1$$

jump label1

label2:

23

Add edges

- Unconditional jump
 - Add edge from source of jump to the block containing the label
- Conditional jump
 - 2 successors
 - One may be the fallthrough block
- Fall-through

Two CFGs

- From the high-level
 - Break down the complex constructs
 - Stop at sequences of non-control-flow statements
 - Requires special handling of break, continue, goto
- From the low-level
 - Start with lowered IR tuples, or 3-address ops
 - Build up the graph
 - More general algorithm
 - Most compilers use this approach

Should lead to roughly the same graph

Using the CFG

- Uniform representation for program behavior
 - Shows all possible program behavior
 - Each execution represented as a path
 - Can reason about potential behavior Which paths can happen, which can't
 - Possible paths imply possible values of variables
- Example: *liveness* information
- Idea:
 - Define program points in CFG
 - Describe how information flows between points

Live variables analysis

• Idea

Determine *live range* of a variable

Region of the code between when the variable is assigned and when its value is used

• Specifically:

Def: A variable v is live at point p if

- There is a path through the CFG from p to a use of v
- There are no assignments to v along the path
- Compute a set of live variables at each point p
- Uses of live variables:
 - Dead-code elimination find unused computations
 - Also: register allocation, garbage collection

Computing live variables

- How do we compute live variables? (Specifically, a set of live variables at each program point)
- What is a straight-forward algorithm?
 - Start at uses of v, search backward through the CFG
 - Add v to live variable set for each point visited
 - Stop when we hit assignment to v
- Can we do better?
 - Can we compute liveness for all variables at the same time?
 - Idea:
 - Maintain a set of live variables
 - Push set through the CFG, updating it at each instruction

Flow of information

- Question 1: how does information flow across instructions?
- Question 2: how does information flow between predecessor and successor blocks?

Live variables analysis

• At each program point:

Which variables contain values computed earlier and needed later

- For instruction I:
 - in[I] : live variables at program point before I
 - out[I] : live variables at program point after I
- For a basic block B:
 - in[B] : live variables at beginning of B
 - out[B] : live variables at end of B
- Note: in[I] = in[B] for first instruction of B
 out[I] = out[B] for last instruction of B

Computing liveness

- Answer question 1: for each instruction I, what is relation between in[I] and out[I]?
- Answer question 2: for each basic block B, with successors B₁, ..., B_n, what is relationship between out[B] and in[B₁] ... in[B_n]

Part 1: Analyze instructions

- Live variables across instructions
- Examples:

• Is there a general rule?

Liveness across instructions

- How is liveness determined?
 - All variables that I uses are live before I Called the uses of I
 - All variables live after I are also live before I, unless I writes to them *Called the defs of* I

in[l] = {b} a = b + 2

• Mathematically:

 $in[l] = (out[l] - def[l]) \cup use[l]$

Example

- Single basic block (obviously: out[I] = in[succ(I)])
 - Live1 = in[B] = in[I1]
 - Live2 = out[11] = in[12]
 - Live3 = out[I2] = in[I3]
 - Live4 = out[I3] = out[B]
- Relation between live sets
 - Live1 = $(Live2 \{x\}) \cup \{y\}$
 - Live2 = $(Live3 \{y\}) \cup \{z\}$
 - Live3 = (Live4 − {}) ∪ {d}

Flow of information

• Equation:

 $in[I] = (out[I] - def[I]) \cup use[I]$

- Notice: information flows backwards
 - Need out[] sets to compute in[] sets
 - Propagate information up
- Many problems are *forward*

Common sub-expressions, constant propagation, others

Live1 x = y+1 *Live2* y = 2*z *Live3* if (d)

Live4

Part 2: Analyze control flow

 Question 2: for each basic block B, with successors B₁, ..., B_n, what is relationship between out[B] and in[B₁] ... in[B_n]

• What's the general rule?

- Rule: A variable is live at end of block B if it is live at the beginning of <u>any</u> of the successors
 - Characterizes all possible executions
 - *Conservative*: some paths may not actually happen
- Mathematically:

$$out[B] = \bigcup_{B' \in succ(B)} in[B']$$

• Again: information flows backwards

System of equations

• Put parts together:

- Defines a system of equations (or constraints)
 - Consider equation instances for each instruction and each basic block
 - What happens with loops?
 - Circular dependences in the constraints
 - Is that a problem?

Solving the problem

- Iterative solution:
 - Start with empty sets of live variables
 - Iteratively apply constraints
 - Stop when we reach a *fixpoint*

```
For all instructions in[I] = out[I] = \emptyset

Repeat

For each instruction I

in[I] = (out[I] - def[I]) \cup use[I]

out[I] = in[succ(I)]

For each basic block B

out[B] = \bigcup_{B' \in succ(B)} in[B']

Until no new changes in sets
```


Example

- Steps:
 - Set up live sets for each program point
 - Instantiate equations
 - Solve equations

Example $L1 = L2 \cup \{c\}$ **L2** = **L3** ∪ **L11** if (c) 1 $L3 = (L4 - \{x\}) \cup \{y\}$ $L4 = (L5 - {y}) \cup {z}$ 2 x = y+1 $L5 = L6 \cup \{d\}$ 3 y = 2 * z $L6 = L7 \cup L9$ if (d)4 $L7 = (L8 - {x}) \cup {y,z}$ L8 = L9**5** x = y+z $L9 = L10 - \{z\}$ L10 = L1z = 16 $L11 = (L12 - \{z\}) \cup \{x\}$ $L12 = \{\}$ 7 z = x

L1 = { x, y, z, c, d } L2 = { x, y, z, c, d } L3 = { y, z, c, d } L4 = { x, z, c, d } $L5 = \{ x, y, z, c, d \}$ L6 = { x, y, z, c, d } L7 = { y, z, c, d } L8 = { x, y, c, d } L9 = { x, y, c, d } $L10 = \{ x, y, z, c, d \}$ $L11 = \{ x \}$ } L12 = { }

Questions

- Does this terminate?
- Does this compute the right answer?
- How could generalize this scheme for other kinds of analysis?

Generalization

- Dataflow analysis
 - A common framework for such analysis
 - Computes information at each program point
 - Conservative: characterizes all possible program behaviors
- Methodology
 - Describe the information (e.g., live variable sets) using a structure called a *lattice*
 - Build a system of equations based on:
 - How each statement affects information
 - How information flows between basic blocks
 - Solve the system of constraints

Parts of live variables analysis

- Live variable sets
 - Called *flow values*
 - Associated with program points
 - Start "empty", eventually contain solution
- Effects of instructions
 - Called transfer functions
 - Take a flow value, compute a new flow value that captures the effects
 - One for each instruction often a schema
- Handling control flow
 - Called confluence operator
 - Combines flow values from different paths

Mathematical model

- Flow values
 - Elements of a lattice $L = (P, \subseteq)$
 - Flow value $v \in P$
- Transfer functions
 - Set of functions (one for each instruction)
 - $F_i : P \rightarrow P$
- Confluence operator
 - Merges lattice values
 - $C: P \times P \rightarrow P$
- How does this help us?

Lattices

- Lattice $L = (P, \subseteq)$
- A partial order relation ⊆
 Reflexive, anti-symmetric, transitive
- Upper and lower bounds *Consider a subset S of P*
 - Upper bound of S: $u \in S : \forall x \in S \ x \subseteq u$
 - Lower bound of S: $I \in S : \forall x \in S \ I \subseteq x$
- Lattices are complete Unique greatest and least elements
 - "Top" $T \in P : \forall x \in P \ x \subseteq T$
 - "Bottom" $\bot \in P : \forall x \in P \bot \subseteq x$

Confluence operator

- Combine flow values
 - "Merge" values on different control-flow paths
 - Result should be a safe over-approximation
 - We use the lattice \subseteq to denote "more safe"
- Example: live variables
 - $v1 = \{x, y, z\}$ and $v2 = \{y, w\}$
 - How do we combine these values?
 - $v = v1 \cup v2 = \{w, x, y, z\}$
 - What is the "⊆" operator?
 - Superset

Meet and join

• Goal:

Combine two values to produce the "best" approximation

- Intuition:
 - Given $v1 = \{x, y, z\}$ and $v2 = \{y, w\}$
 - A safe over-approximation is "all variables live"
 - We want the smallest set
- Greatest lower bound
 - Given $x, y \in P$
 - GLB(x,y) = z such that
 - $z \subseteq x$ and $z \subseteq y$ and
 - $\forall w w \subseteq x \text{ and } w \subseteq y \Rightarrow w \subseteq z$
 - **Meet** operator: $x \land y = GLB(x, y)$

Natural "opposite": Least upper bound, join operator

Termination

• Monotonicity

Transfer functions F are *monotonic* if

- Given x,y ∈ P
- If $x \subseteq y$ then $F(x) \subseteq F(y)$
- Alternatively: $F(x) \subseteq x$
- Key idea:

Iterative dataflow analysis terminates if

- Transfer functions are monotonic
- Lattice has finite height
- *Intuition*: values only go down, can only go to bottom

Example

- Prove monotonicity of live variables analysis
 - Equation: in[i] = (out[i] − def[i]) ∪ use[i]
 (For each instruction i)
 - As a function: $F(x) = (x def[i]) \cup use[i]$
 - Obligation: If $x \subseteq y$ then $F(x) \subseteq F(y)$
 - Prove:

 $x \subseteq y \implies (x - def[i]) \cup use[i] \subseteq (y - def[i]) \cup use[i]$

- Somewhat trivially:
- $X \subseteq y \Rightarrow X S \subseteq y S$
- $X \subseteq Y \Rightarrow X \cup S \subseteq Y \cup S$

Dataflow solution

• Question:

- What is the solution we compute?
- Start at lattice top, move down
- Called greatest *fixpoint*
- Where does approximation come from?
- Confluence of control-flow paths
- Ideal solution?
 - Consider each path to a program point separately
 - Combine values at end
 - Called *meet-over-all-paths* solution (MOP)

Dataflow solution

• Question:

- What is the solution we compute?
- Start at lattice top, move down
- Called greatest *fixpoint*
- Where does approximation come from?
- Confluence of control-flow paths
- Knaster Tarski theorem
 - Every monotonic function F over a complete lattice L has a unique least (and greatest) fixpoint
 - (Actually, the theorem is more general)

Composition of functions

Consider if-then-else graph

- If we compute each path:
 - in = F4(F2(F1(out)))
 - in = F4(F3(F1(out)))
- Two solutions MOP:
 - in = F4(F2(F1(out))) \land F4(F3(F1(out))) Fixpoint:
 - Merge live vars before applying F4
 - in = F4(F2(F1(out)) ∧ F3(F1(out)))
- When are these two results the same?
 - When the transfer functions are *distributive*
 - Prove: $F(x) \wedge F(y) = F(x \wedge y)$

Summary

- Dataflow analysis
 - Lattice of flow values
 - Transfer functions (encode program behavior)
 - Iterative fixpoint computation

• Key insight:

If our dataflow equations have these properties:

- Transfer functions are monotonic
- Lattice has finite height
- Transfer functions distribute over meet operator *Then:*
- Our fixpoint computation will terminate
- Will compute meet-over-all-paths solution

