Compilers

Intermediate Representations and Data-Flow Analysis

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)

Modern optimizing compiler

Front end:

1. Lexical analysis
2. Parsing
3. Semantic analysis

A bit more detail

- Intermediate representations and code generation

Low-level IR

- Linear stream of abstract instructions
- Instruction: single operation and assignment

$$
\mathbf{x}=\mathbf{y} \text { op } \mathbf{z} \quad \mathbf{x} \leftarrow \mathbf{y} \text { op } \mathbf{z} \quad \text { op } x, y, z
$$

- Must break down high-level constructs
- Example:

$$
z=x-2 * y
$$

$$
\begin{aligned}
& \mathrm{t} \leftarrow 2 \\
& \mathrm{z} \leftarrow \mathrm{x}
\end{aligned} \mathrm{x}-\mathrm{t}
$$

- Introduce temps as necessary: called virtual registers
- Simple control-flow
- Label and goto

Stack machines

- Originally for stack-based computers

$$
x-2 * y \square
$$

push x
push 2
push y
multiply
subtract

- What are advantages?
- Introduced names are implicit, not explicit
- Simple to generate and execute code
- Compact form - who cares about code size?
- Embedded systems
- Systems where code is transmitted (the 'Net)

IR Trade-offs

```
for (i=0; i<N; i++)
```

$$
\mathrm{A}[\mathrm{i}]=\mathrm{i} ;
$$

Towards code generation

Motivating Example: Dead code elimination

- Idea:
- Remove a computation if result is never used

$$
\begin{aligned}
& \mathrm{y}=\mathrm{w}-7 ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=1 ; \\
& \mathrm{x}=2 * \mathrm{z} ;
\end{aligned} \quad \square \quad \begin{aligned}
& \mathrm{y}=\mathrm{w}-7 ; \\
& \mathrm{y}=1 ; \\
& \mathrm{x}=2 * \mathrm{z} ;
\end{aligned} \quad \square \quad \begin{aligned}
& \mathrm{y}=1 ; \\
& \mathrm{x}=2 * \mathrm{z} ;
\end{aligned}
$$

- Safety
- Variable is dead if it is never used after defined
- Remove code that assigns to dead variables
- This may, in turn, create more dead code
- Dead-code elimination usually works transitively

Dead code

- Another example:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{y}+1 ; \\
& \mathbf{y}=2 * z ; \\
& \mathbf{x}=\mathbf{y}+\mathbf{z} ; \\
& \mathbf{z}=1 ; \\
& \mathbf{z}=\mathbf{x} ;
\end{aligned}
$$

Which statements can be safely removed?

- Conditions:
- Computations whose value is never used
- Obvious for straight-line code
- What about control flow?

Dead code

- With if-then-else:

- Which statements are dead code?
- What if "c" is false?
- Dead only on some paths through the code

Dead code

- And a loop:

Which
statements are can be removed?

$$
\begin{aligned}
& \text { while (p) }\{ \\
& \quad x=y+1 ; \\
& y=2 * z ; \\
& \quad \text { if (c) } x=y+z ; \\
& z=1 ; \\
& \} \\
& z=x ;
\end{aligned}
$$

- Now which statements are dead code?

Dead code

- And a loop:

Which
statements are can be removed?

- Statement " $x=y+1$ " not dead
- What about " $z=1$ "?

Low-level IR

- Most optimizations performed in low-level IR
- Labels and jumps
- No explicit loops
- Even harder to see possible paths

```
label1:
jumpifnot p label2
x = y + 1
y = 2 * z
jumpifnot c label3
x = y + z
label3:
z = 1
jump label1
label2:
z = x
```


Optimizations and control flow

- Dead code is flow sensitive
- Not obvious from program

Dead code example: are there any possible paths that make use of the value?

- Must characterize all possible dynamic behavior
- Must verify conditions at compile-time
- Control flow makes it hard to extract information
- High-level: different kinds of control structures
- Low-level: control-flow hard to infer
- Need a unifying data structure

Control flow graph

- Control flow graph (CFG):
a graph representation of the program
- Includes both computation and control flow
- Easy to check control flow properties
- Provides a framework for global optimizations and other compiler passes
- Nodes are basic blocks
- Consecutive sequences of non-branching statements
- Edges represent control flow
- From jump to a label
- Each block may have multiple incoming/outgoing edges

CFG Example

Program

$$
\begin{aligned}
& \mathrm{x}=\mathrm{a}+\mathrm{b} \text {; } \\
& \text { y = 5; } \\
& \text { if (c) \{ } \\
& \mathbf{x}=\mathbf{x}+1 \text {; } \\
& y=y+1 ; \\
& \text { \} else \{ } \\
& \mathbf{x}=\mathbf{x}-1 \text {; } \\
& y=y-1 ; \\
& \text { \} } \\
& z=x+y ;
\end{aligned}
$$

Multiple program executions

Control flow graph

- CFG models all program executions
- An actual execution is a path through the graph
- Multiple paths: multiple possible executions
- How many?

Execution 1

Control flow graph

- CFG models all program executions
- Execution 1:
- c is true
- Program executes $\mathrm{BB}_{1}, \mathrm{BB}_{2}$, and BB_{4}

Execution 2

Control flow graph

- CFG models all program executions
- Execution 2:
- c is false
- Program executes $\mathrm{BB}_{1}, \mathrm{BB}_{3}$, and BB_{4}

Basic blocks

- Idea:
- Once execution enters the sequence, all statements (or instructions) are executed
- Single-entry, single-exit region
- Details
- Starts with a label
- Ends with one or more branches
- Edges may be labeled with predicates May include special categories of edges
- Exception jumps
- Fall-through edges
- Computed jumps (jump tables)

Building the CFG

- Two passes
- First, group instructions into basic blocks
- Second, analyze jumps and labels
- How to identify basic blocks?
- Non-branching instructions

Control cannot flow out of a basic block without a jump

- Non-label instruction

Control cannot enter the middle of a block without a label

Basic blocks

- Basic block starts:
- At a label
- After a jump
- Basic block ends:
- At a jump
- Before a label

Basic blocks

- Basic block starts:
- At a label
- After a jump
- Basic block ends:
- At a jump
- Before a label
- Note: order still matters
label1:
jumpifnot p label2

$$
\begin{aligned}
& \mathbf{x}=y+1 \\
& y=2 * z \\
& \text { jumpifnot c label3 }
\end{aligned}
$$

$$
x=y+z
$$

label3:
z = 1
jump label1
label2:
z = \mathbf{x}

Add edges

- Unconditional jump
- Add edge from source of jump to the block containing the label
- Conditional jump
- 2 successors
- One may be the fallthrough block
- Fall-through

Two CFGs

- From the high-level
- Break down the complex constructs
- Stop at sequences of non-control-flow statements
- Requires special handling of break, continue, goto
- From the low-level
- Start with lowered IR - tuples, or 3-address ops
- Build up the graph
- More general algorithm
- Most compilers use this approach

Should lead to roughly the same graph

Using the CFG

- Uniform representation for program behavior
- Shows all possible program behavior
- Each execution represented as a path
- Can reason about potential behavior Which paths can happen, which can't
- Possible paths imply possible values of variables
- Example: liveness information
- Idea:
- Define program points in CFG
- Describe how information flows between points

Program points

- In between instructions
- Before each instruction
- After each instruction

Live variables analysis

- Idea
- Determine live range of a variable Region of the code between when the variable is assigned and when its value is used
- Specifically:

Def: A variable v is live at point p if

- There is a path through the CFG from p to a use of v
- There are no assignments to v along the path
\Rightarrow Compute a set of live variables at each point p
- Uses of live variables:
- Dead-code elimination - find unused computations
- Also: register allocation, garbage collection

Computing live variables

- How do we compute live variables?
(Specifically, a set of live variables at each program point)
- What is a straight-forward algorithm?
- Start at uses of v, search backward through the CFG
- Add v to live variable set for each point visited
- Stop when we hit assignment to v
- Can we do better?
- Can we compute liveness for all variables at the same time?
- Idea:
- Maintain a set of live variables
- Push set through the CFG, updating it at each instruction

Flow of information

- Question 1: how does information flow across instructions?
- Question 2: how does information flow between predecessor and successor blocks?

Live variables analysis

- At each program point:

Which variables contain values computed earlier and needed later

- For instruction I:
- in[l] : live variables at program point before I
- out[]] : live variables at program point after I
- For a basic block B:
- in[B] : live variables at beginning of B
- out[B] : live variables at end of B
- Note: in[l] = in[B] for first instruction of B
out $[I]=$ out $[B]$ for last instruction of B

Computing liveness

- Answer question 1: for each instruction I, what is relation between in[I] and out[I]?

```
in[l]
    I
out[I]
```

- Answer question 2: for each basic block B, with successors B_{1}, \ldots, B_{n}, what is relationship between out[B] and in $\left[\mathrm{B}_{1}\right] \ldots$ in $\left[\mathrm{B}_{\mathrm{n}}\right]$

Part 1: Analyze instructions

- Live variables across instructions
- Examples:

$$
\begin{gathered}
\operatorname{in}[I]=\{y, z\} \\
x=y+z \\
\text { out }[I]=\{x\}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{in}[I]=\{y, z, t\} \\
x=y+z \\
\operatorname{out}[I]=\{x, t, y\}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{in}[I]=\{\mathbf{x}, \mathrm{t}\} \\
\mathbf{x}=\mathbf{x}+1 \\
\text { out }[1]=\{\mathbf{x}, \mathrm{t}\} \\
\hline
\end{gathered}
$$

- Is there a general rule?

Liveness across instructions

- How is liveness determined?
- All variables that I uses are live before I Called the uses of I
- All variables live after I are also live before I, unless I writes to them Called the defs of I
- Mathematically:

$$
\begin{gathered}
\operatorname{in}[l]=\{b\} \\
a=b+2
\end{gathered}
$$

$$
\operatorname{in}[I]=\{y, z\}
$$

$$
x=5
$$

$$
\text { out }[I]=\{x, y, z\}
$$

$$
\text { in }[1]=(\text { out }[1]-\operatorname{def}[I]) \cup \text { use[I] }
$$

Example

- Single basic block (obviously: out[I] = in[succ(I)])
- Live1 $=$ in $[B]=$ in[11]
- Live2 $=$ out[11] $=$ in[l2]
- Live3 $=$ out $[12]=$ in[l3]
- Live4 $=$ out $[13]=$ out $[B]$
- Relation between live sets

- Live1 $=($ Live2 $-\{x\}) \cup\{y\}$
- Live2 $=($ Live3 $-\{y\}) \cup\{z\}$
- Live3 $=($ Live4 $-\{ \}) \cup\{d\}$

Flow of information

- Equation:

$$
\text { in }[I]=(\text { out }[I]-\operatorname{def}[I]) \cup \text { use[I] }
$$

- Notice: information flows backwards
- Need out[] sets to compute in[] sets
- Propagate information up
- Many problems are forward

Common sub-expressions, constant propagation, others

Live1
$\mathbf{x}=\mathrm{y}+1$
Live2
$y=2 * z$
Live3
if (d)
Live4

Part 2: Analyze control flow

- Question 2: for each basic block B, with successors B_{1}, \ldots, B_{n}, what is relationship between out[B] and $\operatorname{in}\left[B_{1}\right] \ldots$ in $\left[B_{n}\right]$
- Example:

- What's the general rule?

Control flow

- Rule: A variable is live at end of block B if it is live at the beginning of any of the successors
- Characterizes all possible executions
- Conservative: some paths may not actually happen
- Mathematically:

$$
\operatorname{out}[B]=\underset{B^{\prime} \in \operatorname{succ}(B)}{\cup} \operatorname{in}\left[B^{\prime}\right]
$$

- Again: information flows backwards

System of equations

- Put parts together:

$$
\begin{aligned}
& \operatorname{in}[I]=(\text { out }[l]-\operatorname{def}[I]) \cup \text { use }[1] \\
& \text { out }[1]=\operatorname{in}[\operatorname{succ}(I)] \\
& \text { out }[B]=\underset{B^{\prime} \in \operatorname{succ}(B)}{ } \operatorname{in}\left[B^{\prime}\right]
\end{aligned}
$$

- Defines a system of equations (or constraints)
- Consider equation instances for each instruction and each basic block
- What happens with loops?
- Circular dependences in the constraints
- Is that a problem?

Solving the problem

- Iterative solution:
- Start with empty sets of live variables
- Iteratively apply constraints
- Stop when we reach a fixpoint

For all instructions in $[I]=$ out $[I]=\varnothing$ Repeat

For each instruction I

$$
\begin{aligned}
& \operatorname{in}[I]=(\text { out }[I]-\operatorname{def}[I]) \cup \text { use[l] } \\
& \text { out }[I]=\operatorname{in}[\operatorname{succ}(I)]
\end{aligned}
$$

For each basic block B

$$
\text { out }[B]=\mathcal{B}_{B^{\prime} \in \operatorname{succ}(B)}^{\cup} \operatorname{in}\left[B^{\prime}\right]
$$

Until no new changes in sets

Example

- Steps:
- Set up live sets for each program point
- Instantiate equations
- Solve equations

Example

- Program points

Example

$\mathrm{L} 1=\mathrm{L} 2 \cup\{\mathrm{c}\}$
$\mathrm{L} 2=\mathrm{L} 3 \cup \mathrm{~L} 11$
$\mathrm{L} 3=(\mathrm{L} 4-\{\mathrm{x}\}) \cup\{\mathrm{y}\}$
L4 $=(\mathrm{L} 5-\{\mathrm{y}\}) \cup\{\mathrm{z}\}$
$\mathrm{L} 5=\mathrm{L} 6 \cup\{\mathrm{~d}\}$
L6 = L7 \cup L9
$L 7=(L 8-\{x\}) \cup\{y, z\}$
L8 = L9
L 9 = L10 - $\{\mathrm{z}\}$
L10 = L1
$\mathbf{L 1 1}=(\mathbf{L 1 2}-\{\mathbf{z}\}) \cup\{x\}$
L12 $=$ \{ $\}$

Questions

- Does this terminate?
- Does this compute the right answer?
- How could generalize this scheme for other kinds of analysis?

Generalization

- Dataflow analysis
- A common framework for such analysis
- Computes information at each program point
- Conservative: characterizes all possible program behaviors
- Methodology
- Describe the information (e.g., live variable sets) using a structure called a lattice
- Build a system of equations based on:
- How each statement affects information
- How information flows between basic blocks
- Solve the system of constraints

Parts of live variables analysis

- Live variable sets
- Called flow values
- Associated with program points
- Start "empty", eventually contain solution
- Effects of instructions
- Called transfer functions
- Take a flow value, compute a new flow value that captures the effects
- One for each instruction - often a schema
- Handling control flow
- Called confluence operator
- Combines flow values from different paths

Mathematical model

- Flow values
- Elements of a lattice $L=(P, \subseteq)$
- Flow value $\mathrm{v} \in \mathrm{P}$
- Transfer functions
- Set of functions (one for each instruction)
- $F_{i}: P \rightarrow P$
- Confluence operator
- Merges lattice values
- $C: P \times P \rightarrow P$
- How does this help us?

Lattices

- Lattice $L=(P, \subseteq)$
- A partial order relation \subseteq

Reflexive, anti-symmetric, transitive

- Upper and lower bounds Consider a subset S of P
- Upper bound of S:
- Lower bound of S:

$$
\begin{array}{cl}
u \in S: \forall x \in S & x \subseteq u \\
I \in S: \forall x \in S & I \subseteq x
\end{array}
$$

- Lattices are complete Unique greatest and least elements
- "Top" $\mathrm{T} \in \mathrm{P}: \forall \mathrm{x} \in \mathrm{P} \mathrm{x} \subseteq \mathrm{T}$
- "Bottom" $\quad \perp \in \mathrm{P}: \forall x \in \mathrm{P} \perp \subseteq \mathrm{x}$

Confluence operator

- Combine flow values
- "Merge" values on different control-flow paths
- Result should be a safe over-approximation
- We use the lattice \subseteq to denote "more safe"
- Example: live variables
- $\mathrm{v} 1=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\mathrm{v} 2=\{\mathrm{y}, \mathrm{w}\}$
- How do we combine these values?
- $\mathrm{v}=\mathrm{v} 1 \cup \mathrm{v} 2=\{\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$
- What is the " \subseteq " operator?
- Superset

Meet and join

- Goal:

Combine two values to produce the "best" approximation

- Intuition:
- Given $\mathrm{v} 1=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\mathrm{v} 2=\{\mathrm{y}, \mathrm{w}\}$
- A safe over-approximation is "all variables live"
- We want the smallest set
- Greatest lower bound
- Given $x, y \in P$
- $\operatorname{GLB}(x, y)=z$ such that
- $z \subseteq x$ and $z \subseteq y$ and
- $\forall w w \subseteq x$ and $w \subseteq y \Rightarrow w \subseteq z$
- Meet operator: $x \wedge y=G L B(x, y)$

Natural "opposite": Least upper bound, join operator

Termination

- Monotonicity

Transfer functions F are monotonic if

- Given $x, y \in P$
- If $x \subseteq y$ then $F(x) \subseteq F(y)$
- Alternatively: $F(x) \subseteq x$
- Key idea:

Iterative dataflow analysis terminates if

- Transfer functions are monotonic
- Lattice has finite height
- Intuition: values only go down, can only go to bottom

Example

- Prove monotonicity of live variables analysis
- Equation: in[i] = (out[i] - def[i]) use[i]
(For each instruction i)
- As a function: $F(x)=(x-\operatorname{def}[i]) \cup u s e[i]$
- Obligation: If $x \subseteq y$ then $F(x) \subseteq F(y)$
- Prove:
$x \subseteq y \quad \Rightarrow \quad(x-\operatorname{def}[i]) \cup u s e[i] \subseteq(y-\operatorname{def}[i]) \cup u s e[i]$
- Somewhat trivially:
- $x \subseteq y \Rightarrow x-s \subseteq y-s$
- $x \subseteq y \Rightarrow x \cup s \subseteq y \cup s$

Dataflow solution

- Question:
- What is the solution we compute?
- Start at lattice top, move down
- Called greatest fixpoint
- Where does approximation come from?
- Confluence of control-flow paths
- Ideal solution?
- Consider each path to a program point separately
- Combine values at end
- Called meet-over-all-paths solution (MOP)
- When is the fixpoint equal to MOP?

Dataflow solution

- Question:
- What is the solution we compute?
- Start at lattice top, move down
- Called greatest fixpoint
- Where does approximation come from?
- Confluence of control-flow paths
- Knaster Tarski theorem
- Every monotonic function F over a complete lattice L has a unique least (and greatest) fixpoint
- (Actually, the theorem is more general)

Composition of functions

Consider if-then-else graph

- If we compute each path:
- in = F4(F2(F1 (out)))
- in = F4(F3(F1 (out)))
- Two solutions MOP:
- in = F4(F2(F1 (out))) \wedge F4(F3(F1 (out)))

Fixpoint:

- Merge live vars before applying F4

- in = F4(F2(F1 (out)) ^F3(F1 (out)))
- When are these two results the same?
- When the transfer functions are distributive
- Prove: $F(x) \wedge F(y)=F(x \wedge y)$

Summary

- Dataflow analysis
- Lattice of flow values
- Transfer functions (encode program behavior)
- Iterative fixpoint computation
- Key insight:

If our dataflow equations have these properties:

- Transfer functions are monotonic
- Lattice has finite height
- Transfer functions distribute over meet operator

Then:

- Our fixpoint computation will terminate
- Will compute meet-over-all-paths solution

