Datalog + Logic Tutorial

Datalog

- Recall Datalog evaluation:
- Head (x,y) <- Body1(x,y,z), Body2(z,y).
- Keep adding tuples matching head (monotonically) based on conjunction of body predicates
- implemented by joining the database tables of body predicates
- Negation stratified

Datalog Exercises

- Consider a "next" relation on instructions
- Next(i, j)
- Implement:
- Reachable(i,j)
- ReachableBypassing(i,j,k)
- ReachableFromEntry(i), assuming an Entry(i)
- CanReachReturn(i), assuming ReturnInstruction(i)
- How about:
- CanReachAllReturns(i)
- AllPredecessorsReachableFromEntry(i)

Propositional Logic

- A language (framework) with:
- propositions: P, Q, R, ...
- logical connectives:
\rightarrow (implies)
- ^ (and)
- ${ }^{\vee}$ (or)
- \neg (not)
- \leftrightarrow (equivalent/equivales)
- constants: t, f

Propositional Logic Warmup

- What is the truth table of \rightarrow ? Of \leftrightarrow ?
- Can derive all logical connectives from one of them and \neg
- or all of them just from \rightarrow and f
- how?
- Basics: $\mathrm{P} \rightarrow \mathrm{P}^{\vee} \mathrm{Q}, \quad \mathrm{P}^{\wedge} \mathrm{Q} \rightarrow \mathrm{P}$
- Most important identity to remember:
- $\mathrm{P} \rightarrow \mathrm{Q} \equiv \neg \mathrm{P}^{\vee} \mathrm{Q}$
- 三 is the extra-logical "equivalent", but \leftrightarrow also works

Other Useful Properties

- $P^{\wedge}\left(Q^{\vee} R\right)=$
- $P^{\wedge}\left(Q^{\wedge} R\right)=$
- $\neg\left(\mathrm{P}^{\wedge} \mathrm{Q}\right)=$
- $\neg\left(\mathrm{P}^{\vee} \mathrm{Q}\right)=$
- distributivity, DeMorgan
- Generally lots of cool properties
- $\mathrm{P}^{\wedge} \mathrm{Q} \leftrightarrow \mathrm{P} \leftrightarrow \mathrm{Q} \leftrightarrow \mathrm{P}^{\vee} \mathrm{Q}$
$\bullet \leftrightarrow$ associative, lower binding power
- "Golden rule"

First-Order Logic

(aka first-order predicate/functional calculus)

- Another language framework with:
- vars: x, y, \ldots
- predicates: $\mathrm{P}(\mathrm{x}, \ldots), \mathrm{Q}(\mathrm{x}, \ldots), \ldots$
- functions $f(x, \ldots), g(x, \ldots)$
- logical connectives, constants as in propositional
- quantifiers: \forall (forall), \exists (exists)
- Quantifiers introduce variable scopes
- Example
$\forall x, y, z: \operatorname{Path}(x, y)^{\wedge} \operatorname{Path}(y, z) \rightarrow \operatorname{Path}(x, z)$

First-Order Logic Properties

- ($\forall x: F(x)) \rightarrow F(r)$
- F any formula, r replaces all occurrences of x
- $F(r) \rightarrow(\exists x: F(x))$
- \exists associates with \exists, \forall with \forall, but neither with each other
- Terms that do not reference the bound variable can move outside quantifier
- \forall is a big ${ }^{\wedge}$: distributes over it
- \exists is a big ${ }^{\vee}$: distributes over it

Properties and Exercises

- $\neg(\forall x: P(x)) \leftrightarrow(\exists x: \neg P(x))$
- $\neg(\exists \mathrm{x}: \mathrm{P}(\mathrm{x})) \leftrightarrow(\forall \mathrm{x}: \neg \mathrm{P}(\mathrm{x}))$
- What happens with \rightarrow ?
- $(\forall x: P(x) \rightarrow Q(x))$
$((\forall x: P(x)) \rightarrow(\forall x: Q(x)))$
- $(\exists x: P(x) \rightarrow Q(x))$
$((\exists x: P(x)) \rightarrow(\exists x: Q(x)))$
stronger, weaker, equivalent, or none?
- How about
- $(\exists x: P(x) \rightarrow Q(x)) \quad((\forall x: P(x)) \rightarrow(\exists x: Q(x)))$

Datalog and First-Order Logic

- These are exactly the logical properties we use to do forall emulations!
- more complex for recursive relations-see code!
- Generally, relationship of Datalog to f.o. logic:
- $P(x, y)<-Q(x, z), R(z, y)$ means

$$
\forall x, y, z: Q(x, z)^{\wedge} R(z, y) \rightarrow P(x, y)
$$

but also, if this is the only rule deriving P,

$$
\forall x, y: \exists z: P(x, y) \rightarrow Q(x, z)^{\wedge} R(z, y)
$$

- What if there are other rules deriving P ?

Datalog Exercise

- We saw forall emulations (CanReachAllReturns(i))
- Let's see a more complex one:
- consider a flow-sensitive VarPointsTo relation:
- VarPointsTo(instr, var, heap)
- write the logical rule "a variable points to an abstract object at instruction i, if it points to that same object at all predecessors of i "
- in practice there will need to be more conditions, e.g., that i doesn't assign the variable, but that's easy

More Datalog Exercises

- Consider an intermediate language represented as Datalog relations
- Instruction(method_name, i_counter, instruction)
- Var(method_name, variable)
- Next(method_name, i_counter, j_counter)
- VarMove(method_name, i_counter, var1, var2)
- ConstMove(method_name, i_counter, variable, const)
- VarUse(method_name, i_counter, variable)
- VarDef(method_name, i_counter, variable)
- Compute live ranges, basic blocks, constant propagation, copy propagation
- a variable is live from the point of its use all the way back to the point of its last def

