
Datalog + Logic Tutorial

Datalog

 Recall Datalog evaluation:
 Head(x,y) <- Body1(x,y,z),
Body2(z,y).

 Keep adding tuples matching head
(monotonically) based on conjunction of body
predicates
 implemented by joining the database tables of body

predicates

 Negation stratified

Yannis Smaragdakis
University of Athens

2

Datalog Exercises

 Consider a “next” relation on instructions
 Next(i, j)

 Implement:
 Reachable(i,j)
 ReachableBypassing(i,j,k)
 ReachableFromEntry(i), assuming an Entry(i)
 CanReachReturn(i), assuming ReturnInstruction(i)

 How about:
 CanReachAllReturns(i)
 AllPredecessorsReachableFromEntry(i)

3Yannis Smaragdakis
University of Athens

Propositional Logic

 A language (framework) with:
 propositions: P, Q, R, …
 logical connectives:

 → (implies)
 (and)
 (or)
 (not)
 ↔ (equivalent/equivales)

 constants: t, f

Yannis Smaragdakis
University of Athens

4

Propositional Logic Warmup

 What is the truth table of → ? Of ↔ ?
 Can derive all logical connectives from one of

them and
 or all of them just from → and f
 how?

 Basics: P → P Q, P Q → P
 Most important identity to remember:

 P → Q ≡ P Q
 ≡ is the extra-logical “equivalent”, but ↔ also works

Yannis Smaragdakis
University of Athens

5

Other Useful Properties

 P (Q R) =
 P (Q R) =
 (P Q) =
 (P Q) =

 distributivity, DeMorgan
 Generally lots of cool properties

 P Q ↔ P ↔ Q ↔ P Q
 ↔ associative, lower binding power
 “Golden rule”

Yannis Smaragdakis
University of Athens

6

First-Order Logic
(aka first-order predicate/functional calculus)

 Another language framework with:
 vars: x, y, …
 predicates: P(x,…), Q(x,…), …
 functions f(x,…), g(x,…)
 logical connectives, constants as in propositional
 quantifiers: (forall), (exists)

 Quantifiers introduce variable scopes
 Example

x,y,z: Path(x,y) Path(y,z) → Path(x,z)

Yannis Smaragdakis
University of Athens

7

First-Order Logic Properties

 (x: F(x)) → F(r)
 F any formula, r replaces all occurrences of x

 F(r) → (x: F(x))
 associates with , with , but neither with

each other
 Terms that do not reference the bound variable

can move outside quantifier
 is a big : distributes over it
 is a big : distributes over it

Yannis Smaragdakis
University of Athens

8

Properties and Exercises

 (x: P(x)) ↔ (x: P(x))
 (x: P(x)) ↔ (x: P(x))
 What happens with → ?

 (x: P(x) → Q(x)) ((x: P(x)) → (x: Q(x)))
 (x: P(x) → Q(x)) ((x: P(x)) → (x: Q(x)))

 stronger, weaker, equivalent, or none?

 How about
 (x: P(x) → Q(x)) ((x: P(x)) → (x: Q(x)))

Yannis Smaragdakis
University of Athens

9

Datalog and First-Order Logic

 These are exactly the logical properties we use
to do forall emulations!
 more complex for recursive relations—see code!

 Generally, relationship of Datalog to f.o. logic:
 P(x,y) <- Q(x,z), R(z,y)

means
x,y,z: Q(x,z) R(z,y) → P(x,y)

but also, if this is the only rule deriving P,
x,y: z: P(x,y) → Q(x,z) R(z,y)

 What if there are other rules deriving P?

Yannis Smaragdakis
University of Athens

10

Datalog Exercise
 We saw forall emulations

(CanReachAllReturns(i))
 Let’s see a more complex one:

 consider a flow-sensitive VarPointsTo relation:
 VarPointsTo(instr, var, heap)

 write the logical rule “a variable points to an
abstract object at instruction i, if it points to that
same object at all predecessors of i”
 in practice there will need to be more conditions, e.g.,

that i doesn’t assign the variable, but that’s easy

11Yannis Smaragdakis
University of Athens

More Datalog Exercises
 Consider an intermediate language represented

as Datalog relations
 Instruction(method_name, i_counter, instruction)
 Var(method_name, variable)
 Next(method_name, i_counter, j_counter)
 VarMove(method_name, i_counter, var1, var2)
 ConstMove(method_name, i_counter, variable, const)
 VarUse(method_name, i_counter, variable)
 VarDef(method_name, i_counter, variable)

 Compute live ranges, basic blocks, constant propagation,
copy propagation
 a variable is live from the point of its use all the way back to the point

of its last def

12Yannis Smaragdakis
University of Athens

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

