
From Soundiness to
Soundness

Yannis Smaragdakis
 University of Athens

Soundness

An oft-used term in program analysis
Example quotes in recent keynote:

 “A parallel library for the static analysis of Java
bytecode”

 “based on abstract interpretation”
 “hence sound”

2Yannis Smaragdakis
University of Athens

Define Soundness!

What does it mean for an
analysis to be sound?

either a static one or a dynamic one

3Yannis Smaragdakis
University of Athens

Sound =
 “It works well” ?

4Yannis Smaragdakis
University of Athens

Sound =
 “It has a theory behind it” ?

5Yannis Smaragdakis
University of Athens

Sound =
 “There is a proof of some property” ?

6Yannis Smaragdakis
University of Athens

No!

Soundness has a well-defined meaning
It only has to do with the analysis itself

not with what we can prove about it

Sound = “analysis claim implies truth”
Same definition as in mathematical logic:

proof of P implies P
often:

“the logic can only prove true theorems”

7Yannis Smaragdakis
University of Athens

Sound =
 AnalysisClaim(P) → P

8Yannis Smaragdakis
University of Athens

Examples

Analysis: the program has a race →
the race is real (“no false positives”)

Analysis: the program is well-typed →
no run-time type errors (“no false negatives”)

Analysis: call may invoke these N methods →
no others ever called (“overapproximate”)

Analysis: expressions must be aliases →
they can never have different values
(“underapproximate”)

9Yannis Smaragdakis
University of Athens

Hold on! You Just Told Us
Soundness Means 4 Things?

Yes! And that’s the first difficulty
sound may mean “underapproximate”, but

also “overapproximate”
sound may mean “no false positives”, but

also “no false negatives”
Sound = AnalysisClaim(P) → P
But what claim does an analysis make?
Often only in the mind of its user:

claim is a matter of interpretation

10Yannis Smaragdakis
University of Athens

Example Analysis Claims

An analysis returns x results
is it a claim that these are the only ones?

a “may-analysis”

is it a claim that at least these are valid?
a “must-analysis”

An analysis warns of bugs
is it a claim that these are real bugs?

a “bug-detector”

is it a claim that no other bugs exist?
a “verifier”

11Yannis Smaragdakis
University of Athens

Common Patterns for
Correctness Analyses

Dynamic analyses are usually bug detectors
i.e., analysis claims to find bugs
sound = only true warnings
e.g., race detection, fuzzing, dynamic-

symbolic execution
Static analyses are often verifiers

analysis certifies the absence of errors
sound = finds all errors
e.g., type systems, data-flow analyses

12Yannis Smaragdakis
University of Athens

What About Other Analyses?

In the static analysis world:
may/possible-analysis = aims to be

overapproximate
sound = all actual behaviors are captured

must/definite-analysis = aims to be
underapproximate
sound = only captures actual behaviors

13Yannis Smaragdakis
University of Athens

Now “Complete”

We saw: Sound = AnalysisClaim(P) → P
Complete = P → AnalysisClaim(P)

Sound =
AnalysisClaim(P) → P ≡
P → AnalysisClaim(P) ≡
P → AnalysisClaim(P)

An analysis that is sound for a property P
is complete for property P, and vice versa
e.g., a sound verifier is a complete bug finder

14Yannis Smaragdakis
University of Athens

Soundness In Static Analysis

There is no practical static whole-program
may-analysis that is sound

 (whole-program: models the heap)
 this is remarkable!

What about all these soundness proofs, claims,
etc.?

proof/claim is for a limited language
unsoundness is due to highly dynamic features in

full language:
reflection, dynamic loading, setjmp/longjmp, eval

15Yannis Smaragdakis
University of Athens

Soundiness [CACM’15]

Soundy analysis:
sound handling of most language features
deliberately unsound handling of a feature

subset
subset well recognized by experts

A soundy analysis aims to be as sound as
possible without compromising precision and/or
scalability

All “sound” analyses are really just soundy

16Yannis Smaragdakis
University of Athens

Why Is Soundness Difficult?

x = y.f;
z = y.f;

x == y?
y may have escaped to other thread

w.foo(); // only one foo in the program
 is it the one called? Maybe more loaded

dynamically

c = Class.forName(str);
should it return all possible classes? Too

imprecise

17Yannis Smaragdakis
University of Athens

Why Is Soundness Difficult?

Best-effort handling of complex features is too
expensive!

Different analysis logic: cannot just enumerate
values

More than half of the program non-analyzable
Expensive: work wasted (more on this later)

So, what can we do?

18Yannis Smaragdakis
University of Athens

Approach I: Empirical
Soundness
Empirical soundness:

quantify unsoundness, get it close to zero
It now makes sense to talk about “more sound”

and “less sound”
Try to capture practical usage patterns of

dynamic language features
Common theme in much recent work

Livshits et al. (JavaScript analysis for libraries)
Li et al. (Java reflection analysis)

19Yannis Smaragdakis
University of Athens

Analysis Pattern: Inter-Proc.
Back-Propagation [APLAS’15]

 Create dummy objects, see how they are used,
determine what they could have been!

 Class c = Class.forName(className);
…

Object o = c.newInstance();
…

e = (Event) o;
 c points to a special object, propagates as-if normal
 when it gets to the cast, we can guess what c was

20Yannis Smaragdakis
University of Athens

Analysis Pattern:
Inter-Proc. Back-Propagation
 The same idea applies to lots of patterns

Class c =
Class.forName(className);
…

Field f = c.getField(fieldName);
 when c gets to getField, we can guess what it

was
 if we know (something about) fieldName

21Yannis Smaragdakis
University of Athens

Notes on
Inter-Proc. Back-Propagation
 It is “more sound” to over-guess objects based

on use
 the analysis is a may-analysis

 Livshits et al. and Li et al. do the same but for
fewer patterns, mostly intra-procedurally
 why? To avoid over-guessing for reasons of

precision and analysis cost
 We handle these concerns separately

22Yannis Smaragdakis
University of Athens

Approach II: Full Soundness,
for Parts of the Program

Accept that a sound analysis will only give
results for parts of the program, see how much

Defensive analysis: sound-by-definition static
analysis

Anything that is inferred is guaranteed
conservative (overapproximate)

Need special encoding: a top value (T) to
designate “any value”

Need special handling to avoid wasting work

23Yannis Smaragdakis
University of Athens

Wasting Work
while (...)
{ x = y.fld;
 x.foo(y); }

Say we know all the (currently) possible values
of y and of y.fld

We get values for x
One of these results in a new foo target
Yielding a T for y.fld
This should invalidate all earlier values for x

24Yannis Smaragdakis
University of Athens

Defensive Analysis
while (...)
{ x = y.fld;
 x.foo(y); }

Never infer anything unless guaranteed to have
all values

Values of y and of y.fld remain “unknown”
Defensive: “unknown” and “all values” (T) are

equivalent
Idea: represent both by the empty set of values

25Yannis Smaragdakis
University of Athens

Empty Set

An empty set of values means “cannot bound”
Lots of advantages:

no explicit representation, no cost
naturally encodes defensive behavior

no difference between “cannot be certain the
set of values is bounded” and “the set of values
is unbounded”

no wasted work: sets start empty and only
grow
never revert to empty

26Yannis Smaragdakis
University of Athens

Defensive Analysis: in Doop

Datalog-based analysis framework for Java
[OOPSLA’09, PLDI’10, POPL’11, OOPSLA’13,
 PLDI’13, PLDI’14, SAS’16, …]

2-3K logical rules (20-25KLoC)
Very high performance (often 10x over prior work)
Sophisticated, very rich set of analyses

 subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity,
call-site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type
filtering, precise exception analysis

High completeness: full semantic complexity of Java
 jvm initialization, reflection analysis, threads, reference queues, native methods, class

initialization, finalization, cast checking, assignment compatibility

27

http://doop.program-analysis.org

Yannis Smaragdakis
University of Athens

Defensive Analysis Results

Can still cover ~40% of realistic programs
Meaning: 40% of the program variables get

sets of values that are not empty
The rest conservatively over-approximated to

empty, i.e., T

28Yannis Smaragdakis
University of Athens

Conclusions

29Yannis Smaragdakis
University of Athens

Recap

Soundness is a property of an analysis
not a meta-property, nothing to do with proofs

One should be clear on analysis “claims”
 they are subject to interpretation, affect soundness

No practical static analysis* is sound
surprising but true

Once we accept this, we can do interesting stuff
in this space

empirical soundness + defensive (lower coverage)

30Yannis Smaragdakis
University of Athens

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

