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Abstract

Transactional memory is being advanced as an alternativieato
ditional lock-based synchronization for concurrent pragming.
Transactional memory simplifies the programming model aag-m
imizes concurrency. At the same time, transactions caersuéim
interference that causes them to often abort, from heavsheaels
for memory accesses, and from expressiveness limitatoms for
1/0 operations). In this paper we propose an adaptive loghketh-
nigue that dynamically observes whether a critical sectimuld
be best executed transactionally or while holding a mutek.lo
The critical new elements of our approach include the adépti
logic and cost-benefit analysis, a low-overhead implentamtaf
statistics collection and adaptive locking in a full C cofepiand
an exposition of the effects on the programming model. lemrxp
ments with both micro- and macro-benchmarks we found adapti
locks to consistently match or outperform the better of tweedom-
ponent mechanisms (mutexes or transactions). Comparatht e
mechanism alone, adaptive locks often provide 3-to-10gdiges.
Additionally, adaptive locks simplify the programming rabaly re-
ducing the need for fine-grained locking: with adaptive kydke
programmer can specify coarse-grained locking annotatiand
often achieve fine-grained locking performance due to thestac-
tional memory mechanisms.

1. Introduction

Multi-core processors are turning shared-memory parstteinto
the default model of computation for mainstream softwansetle
opment. Although there are ways to take advantage of such pal
allelism through different high-level paradigms (e.greatn pro-
cessing or message passing) explicit multi-threading irsnthe
most direct way to program parallel systems and its impodas
undoubted for years to come.

In the multi-threaded programming world, interferencenssn
threads is a major issue and results in hard-to-trace defenth
as race conditions or deadlocks. Traditionally, progransniave
coordinated threads using variantsnobnitor-styleprogramming:
a programming style based on the dual abstractions of mutual
exclusion (nutey locks, and condition variables.
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cies. Furthermore, TM does not require fine-grained defioeaf
critical sections in order to achieve high concurrency. Moans-
actional memory implementations allow threads to procaegdss
they interfere on the same shared memory data. In contraséxm
locks conservatively prevent threads from proceedingeaf/theed
to acquire the same lock, even if they never access the same da

The TM approach is not free of disadvantages, however. Trans
actions eliminate deadlock, but replace it with a highebpfulity
of livelock or slower progress: Interfering threads canseaaach
other’s transactions to abort and retry. Furthermore,saetions
cannot easily support irreversible operations, such asdépite
several proposals in this direction (e.g., [2, 13, 33]).aHin when
transactions are implemented in software they can suffen fiigh
overheads during the execution of atomic blocks: Everyeshar
memory read and write operation needs to be trapped anadreat
specially by the TM runtime system. The overheads have letkso
authors to even claim that software transactional memotyriky
a research toy” [4].

In this paper, we preserddaptive locks a synchronization
mechanism combining locks and transactions for best paefnce.

In our approach, the programmer specifies critical sectiwhich
can be executed either with mutual exclusion or atomicaliyans-
actions. For instance a critical section

atomc (11) { ... }

is equivalent to either

atomc { ... }

(when the system executestiansaction modgor

lock(l1); unl ock(11);

(when the system executesrimutex mode At any point in time,
all critical sections that use the same lotk, have to execute in
the same mode.

The decision to execute in mutex mode or in transaction mode
depends on the observed behavior of the critical sectionehaon
thenominal contentiorfthow many threads are blocked on the lock
when in mutex mode), thectual contentiorthow many times each
transaction retries when in transaction mode), andréresactional
overheadhow much slower is the critical section when in transac-
tion mode compared to mutex mode). Our adaptive locks coenput
these three factors dynamically during the program’s etk@cand

In recent years, an alternative model has been proposed forcombine them for an accurate cost-benefit analysis, asidedcr

thread coordinatiorfransactional memor§TM) replaces mutexes
and condition variables with “atomic” blocks of code, thae a
meant to execute as if all other threads had stopped running d
ing the execution of the atomic block. Transactional mentay
intrigued both software and hardware designers, and many ma
jor processor manufacturers have already announced dufjgpor
TM in upcoming architectures. The advantage of TM is twafold
First, it offers a higher-level programming model by obirigtthe
need for stating which locks to acquire. This means that d¢ede
more composable: Callers do not need to know which locks thei
callees hold, and writing code does not require global kedgé

of which locks are used by possibly interfering threads. pbesi-
bility of low-level deadlock is also avoided, as there is mbgmtial

for the programmer to erroneously specify circular locketegen-

in Section 2. We present techniques for performing this asmp
tation highly efficiently. The overall adaptive lock implentation
imposes very low overhead compared to either a regular nhot&x
or a transaction, as described in Section 3.

Generally, however, the adaptive locks programming moslel r
sembles mutex locks more than it does transactions. Fanost
the deadlock-freedom and composability guarantees cfadions
are not preserved, since our critical sections may exeouteuiex
lock mode. It is, therefore, important to ask, “are adaptoeks
just an optimized implementation of locks?” Based on the-ben
efits observed in our evaluation, we argue that the praciioal
pact of adaptive locks is much more than that. We believe that
adaptive locks significantly change the programming model f
concurrency. Adaptive locks allow the programmer to cotrege



only on coarse-grainedlocking approaches, instead of trying to
achieve more performance by introducing error-priine-grained
locks. The performance of fine-grained locks is then oftdly fu
recovered automatically by employing the transactionamomy
mechanism when appropriate. All our benchmark measurement
are implemented with very coarse-grained lock annotat{ofien

a single global lock, which trivially has good composapilitnd
deadlock-freedom properties), yet still achieve signiftcaerfor-
mance improvements. (Indeed, such coarse-grained lockalsa
be automatically inferred for correctness—e.g., [3].) §fadaptive
locks encourage programmers to use locks at whicheverdéab-
straction correctness is easy to establish, and not at gmifgrity
needed for performance.

Our work’s closest relatives in the research literaturé_ajevar
and Goodman'dock elision[29] and Welc et al.'sransactional
monitors[36]. (There is more work that is related at the conceptual
level—e.g., in database transactions—and we discussrtl8&¢-
tion 6.) Lock elision is a hardware technique for (effedyem-
plementing locks as low-level transactions, but with n@cleost-
benefit model, as the one we introduce. Welc et al.’s traitszadt
monitors implement locks optimistically as soon as the roor@n-
counters contention. Again, there is no dynamic cost-bemefdel
for the two modes of execution, or a possibility of revertiagk to
locks if the TM mechanism turns out to be inefficient. Welc let a
acknowledge the need for more adaptive solutions, whichvouk
provides. Finally, the work in this paper is an evolution aah-
crete realization of theon-blocking locké&dea that we presented in
an earlier position paper [34]. Overall, our concrete dbotions
are as follows:

e We present a highly efficient and effective implementatién o
the concept of adaptive locks. Our adaptive locks keep geeci
statistics on the behavior of the program, while introdgoiery
low overhead: acquiring an adaptive lock is practically noren
costly than acquiring a mutex lock. Importantly, this reresall
performance arguments against Software Transactionaldiiem
[4]: transactions are used only when they yield benefits jraca
no overhead otherwise. We describe the optimizations resipie
for our mechanism'’s efficiency—e.g., trading some inacoyma
our statistics in exchange for shortening the critical ptlock
acquisition and avoiding bottlenecks. Our implementai®im
the form of a full C compiler, based on the CIL framework [27],
and is freely available for download (making it one of the mos
mature open-source platforms for TM research).

e We define conditions under which transactional and mutex-
based execution of critical sections yields equivalentbi (or,
equivalently, our adaptive locks can be used as a trandparen
placement of mutex locks). The conditions are easily cheétive
numerous past static and dynamic analyses for race detectio

e We evaluate adaptive locks with several micro- and macro-
benchmarks. Our evaluation shows that adaptive locks amnbi
the performance benefits of mutex locks and transactionsv-in
ery case, the performance of adaptive locks closely matittees
performance of the better of the two component mechanisms.
This allows adaptive locks to achieve the highest possible p
formance not just for different applications, but also fdfedent
configurations of the same application (e.g., 3x faster Tidrfor
2 processors, 3x faster than mutex locks for 64 processoos)-
pared to either mutex locks or transactions alone, adajuoles
routinely achieve order-of-magnitude performance imprognts
by emulating the performance of the complementary mechanis
Adaptive locks occasionally outperform both componentmaec
nisms at the same time, by up to 50%, due to the varied coatenti
behavior of different application phases.

2. Design and Adaptivity Logic

We next discuss the concept of adaptive locks, as well asa$te ¢
benefit logic that the locks implement in order to chooserthei
optimal execution mode.

2.1 Programming with Adaptive Locks

Adaptive locks introduce syntax for a labeled atomic sectithis
is a block structured construct, headed by the keywordri ¢ with
a label indicating which adaptive lock protects the codeestent
(usually a block statement) that follows. By convention,this
paper (as well as in our implementation) adaptive locks ectaded
as instances of typal t, e.g.:
al _t lockl; ...
atom ¢ (lockl) {

Il critical section
}

The programmer is responsible for ensuring that the lock la-
bels are “correct’—i.e., that the program will work corfgcif
all instances oht oni c( <IckLbl>) are replaced by a regular mu-
tex,Lock( <lckLbl>) . (We assume a block-structured mutex lock,
with an unlock performed at the end of the block.)

This condition is necessary but not sufficient: the program-
mer also has the obligation to ensure that the program is
equally correct if all lock labels are dropped and all catisec-
tionsat oni ¢( <lckLbl>) <stmt> execute as transactiorzs,oni ¢
<stmt>, in a conventional TM system (e.qg., [14, 15, 32]). The rea-
son is that transactions have subtly different behavianfroutex
locks. We will discuss this topic in Section 4, where we alffera
general condition for the semantic equivalence of tramsasand
mutexes. Note, however, that adaptive locks do not suppamst
actional constructs that rely on retrying (such as an explit r y
orabort statement).

The adaptive lock implementation is, thus, free to exece t
critical section it protects either as a transaction or adtiza sec-
tion protected by a mutex lockAs mentioned in the Introduction,
we say that the adaptive lock is transaction moder in mutex
mode respectively. All critical sections associated with tlzeng
adaptive lock have to execute in the same mode at a givenlfime.
thread tries to acquire an adaptive lock and decides it viargse-
cute in a different mode than the current one, it marks thetada
lock “in-transition” and waits until all current criticakstions exe-
cuting with this lock finish. (Clearly, there is more than anmitical
section executing only if the adaptive lock is in transattiaode.)
While the lock is in-transition, no further mode switchingpisions
can be made. Furthermore, in the case of lock nesting, the mibd
a nested adaptive lock cannot differ from the mode of a suding
lock.

The reasons for switching the mode of an adaptive lock are
either correctness- or performance-related. In the fonase, if the
lock is executing in transaction mode and an irreversibkraion
is called (e.g., I/O) the (outermost) critical section agtst in mutex
mode. The latter case captures the heuristic at the coreaptiad
locks, for deciding when to switch modes in order to improve
performance.

10ne can argue that the terms “transaction” and “mutex loek&nto pro-

gramming models, rather than implementation mechanisngs, Eansac-
tions can be implemented by a mechanism that guaranteessexg| or

mutex locks can be implemented speculatively. In this paperuse the
terms to refer to the implementation mechanisms overwimglyiasso-
ciated with them in common practice. We have found this to &t for

communications purposes: when describing our work, l@temave been
more likely to grasp it quickly if we explain it as a “mechamisadapting

between mutex locks and transactions” rather than as a ‘anézth adapt-
ing between speculative and non-speculative locks, wherepeculation
is implemented through TM techniques”.



2.2 Cost-Benefit Analysis

The main reason for executing an adaptive lock in transactiode

is that mutex locks can exhilfitlse exclusiofi30]. A single mutex
lock is commonly used to protect a large amount of shared-data
an approach known a&®arse grained lockingn this way, multiple
threads are blocked from accessing the data, even in cass wh
they would not really conflict. Programmers use coarse gthin
locking because it is often far easier than trying to cotyea$so-
ciate locks with smaller amounts of data. Several domaiddlata
structures (e.g., red-black trees) are notoriously diffitn code
with a fine-grained locking discipline.

Therefore, the performance benefit of transactions is due to
higher concurrency: More threads can execute the sameatggc-
tion with transactions than with mutexes. Assuming thatisze
processors exist to run these threads, a net performanc=age
(speedup equal to the level of concurrency) can result.

At the same time, executing an adaptive lock in transaction
mode incurs high overheads when there is true contentiom®n t
data. In this case, different threads interfere with eattlemtpre-
venting the successful commit of transactions. Therefoa@sac-
tions have to retry multiple times before they successftdignmit,
and the result is slower progress, or even livelock. The Iprob
is solved when switching to mutex mode because the thread “re
serves” the right to run up-front, thus making progress aithin-
terference.

A second factor hindering the performance of transactiodeno
is that, in pure-software TM, there is typically a high owveat as-
sociated with executing a critical section transactign&bftware
transactional memory (STM)ystems need to execute logging ac-
tions on each read or write operation of shared memory daa. D
pending on the design of the STM, the logged values are aiteat
to update shared memory on transaction comradd-logging, or
to revert shared memory to its previous state on transaetiont
(undo-logging.2 A second overhead is due to the need to perform
synchronization operations (e.g., acquiring locks asdgedi with
each written word) to ensure consistent memory writes. Tdezn
for logging actions and synchronization imposes a heavyheas
on shared memory operations and often slows down transactio
mode execution of critical sections by a significant factag(, 2-
8x). Additionally, STM implementations often impose extnaer-
heads for policy-specific reasons—e.g., re-validatingrdas set
when a conflict is detected, incurring cost for aborting, etc

Therefore the adaptive lock analysis of whether to exeaute i

e Transactional overheado): the slowdown factor due to trans-
actional execution, because of the need to trap shared igemor
reads and writes, the need to synchronize, the need to idatel
as part of a complex contention management policy, etc.i$kis
multiplicative factor in thecostof transaction mode.

Thus, the cost-benefit analysis of adaptive locks is basddeon
inequality:

a-o0>c¢

(The two sides correspond to the overheads of each mode of exe
cution relative to an idealized, no-contention executiéih three
factors are computed separately for each adaptive locke dime
decision on which mode to execute affects all critical sextiof the
lock.) If this inequality holds, mutex mode execution isfprable,
otherwise the benefit of transaction mode execution outveeitp
cost. Note that the analysis applies and a trade-off exista &
transactional execution incurs no overhead< 1), e.g., through

the use of specialized hardware.

The above cost-benefit analysisegactand not approximate,
yet approximations need to be introduced because, forricsta
it is hard to measure the overheadully accurately, factora is
predictive of future executions so it needs to be estimatenh f
past data, etc. As we describe next, facioenda are computed
dynamically at all times. Factas is also computed dynamically
by sampling a subset of the executions—an approach thaegrov
superior to off-line estimates in our measurements duedditph
variance ofo for different applications and locks.

To see the advantage of having a complete model for cost and
benefit, consider, for instance, the adaptivity approatibvied by
Welc et al. [36]. Their technique converts a critical settto a
transactional implementation as sooraagcontention is observed,
i.e., as soon as is more than 1. This completely disregards the
costs of transactional execution and results in obtainimgdgoe-
havior only for transaction-friendly workloads.

3. Implementation and Optimizations

We next describe our implementation of adaptive locks. Wecse
tively present key components that expose the precise (edic,
behavior when an adaptive lock is in the process of switching
modes) or reveal crucial elements for high performance.

3.1 Compiler and Locking Mechanism
We have implemented adaptive locks in a conservative exten-

transaction mode or mutex mode has to take into account threesjon of the C language. Our compiler is based on the CIL in-

factors:

e Nominal contentior(c): the number of threads contending for
the lock. This quantifies the potentiknefitof executing in

frastructure [27] for extensible C compilers. A special g
at the function level is used to suppi oni ¢ annotations: the
entire body of the function is then considered to be protecte

transaction mode instead of mutex mode. The quantity can be by the corresponding adaptive lock. The compiler translatech
measured by keeping a counter of how many threads are blockedfunction body with atomic annotations into two different-ob

on the lock when in mutex mode. When in transaction mede,
is equal the number of threads currently executing thecatiti
section.

e Actual contention(a): the number of times a transaction needs
to try before it commits. This quantifies the contention blyent
threads on the actual data the critical section tries tossccehe
quantity is a multiplicative factor in theost of executing the
critical section in transaction mode.

2A few STM systems suffer no such overhead [5, 18, 22], by teding
transactions into lock acquisitions and releases in a way gharantees
deadlock-freedom (and, thus, the transaction never needstry). The
performance of such “auto-locking” systems depends diyctm (non-
modular) compiler analysis or program annotation. No regméative of this
approach has yet achieved the same level of performancaratastl STMs
(pessimistic or optimistic) in a general-purpose, fullyamatic setting.

ject code versions: aw version used for mutex mode execu-
tion and incurring no further overheads, antransactional ver-
sion, where all shared memory reads and writes become trans-
actional memory operations for an underlying STM. We use
TL2 [6], a high-performance STM library, as our back-end STM
Our implementation is freely available (current workingsien

at http://ix.cs.uoregon. edu/ ~t akayuki/al /) and repre-
sents one of the most mature open-source compiler infidates

for STM experimentation. Other researchers can build orcoor-
piler support for TM by modifying our CIL patterns to produfcei
compilers either for different TM constructs or for diffeteback-
end TM implementations.

Our implementation of adaptive locks replaces regular ek
quisition and release with versions that perform the adapga-
soning. We use a standard pattern for high-performancehsync
nization: The adaptive lock’s state is packed in a memorydwor



and we represent bit blocks as different pseudo-variatiies. Mbde acquire(al _t* lock) {
components of the state include the number of threads execut int spins = 0;

ing in transaction mode fir dsl nSt mvbde), whether we are cur- int useTransact = MJTEX_MODE;
rently in mutex mode rfut exMode), whether the mutex lock is I NC(1 ock- >t hdsBl ocked)

held ( ockHel d), and whether we are currently in the process ;" ¢ (TRUE) { ’

of switching modest(r ansi ti on). The next state is then com- intptr_t prev,next:

puted and updated atomically with a compare-and-swag)(in- prev = | ock->state:

struction. The thread spins, retrying the state update th&tiCAS if ('transition(prev)) {

succeeds, or until exceeding a number of tries, in which @ase /1l we are not already in transition

has to yield the CPU. These elements are illustrated pigdise if ((useTransact = transactMobde(lock, spins)) ==
the main workhorse of the lock acquisition process:aheui re TRANS_MODE)

routine, shown in Figure 1. (This code omits an optimizatiist {

/!l we are better off in transaction node
if (!lockHeld(prev)) {
/1l the lock is free or in transaction node

cussed in detail in Section 3.2.1.) The routine is calledyetime a
thread attempts to acquire an adaptive lock. The returreviali-

cates whether the adaptive lock was acquired in tran_san‘gtmte next = set Mit exMbde(prev, FALSE);
(TRANS_MODE) or mutex mode NUTEX_MODE). The code is simple next = set Thrdsl nSt mvbde( next,
but introducing some conventions is helpful: thrdsl nSt nvbde( next ) +1) ;
e The separate bit ranges of both the current statey) and if (CAS(lock->state, prev, next) == prev) break;
the next statenext) are set through macros maintaining the } else {
naming convention. For instance, checking thekHel d bit of Il the lock is in nutex mode. Need transition
the current state is done with the expressiorkHel d( pr ev) next = set MitexMode(prev, FALSE);
whereas setting the same bit to 1 on the next state is done with next = setTransition(next, TRUE);
the callset LockHel d( next , 1) . We useTRUE andFALSE for 1 CAS(1 ock->state, prev, next);
and 0, respectively, when the bit value represents a boolean } else {
o Atomic operations are shown in all capital lettersiC, DEC, and Il we are better off in nutex node
cAs call (directly or indirectly) atomic instructions. This livbe if (!lockHel d(prev) &&
important when we discuss performance optimizations. ( thrdsl nSt mvbde(prev) == 0)
e Each adaptive lock holds data for computing its adaptividyis- /1 the lock is free, no threads in crit.sec.
tics. These data are not accessed directly in the code of Fig- next = set Mut exMbde(prev, TRUE);
ure 1, with the exception dfock- >t hdsBl ocked: a counter of next = setLockHel d(next, TRUE);
threads blocked on the lock, if the lock is in mutex mode—agddi if (CAS(lock->state, prev,next) == prev) break;
thrdsl nSt mvbde yields the ¢ factor from Section 2.2. For } else if (!mutexMde(prev)) {

/1 lock is currently in transaction node
next = set Mut exMode(prev, TRUE);
next = setTransition(next, TRUE);

its adaptivity logic, theacqui re routine callst r ansact Mode
which implements the cost-benefit analysis of Section 2d2ran

turns the estimated best mode for the adaptive lock. CAS(1 ock->st at e, prev, next) :

We can now see precisely the behavior of adaptive lockself th }
lock is not already in a state of transition from one mode ® th
other then the cost-benefit analysis is performed to see iwltiae } else { o
optimal execution mod&All possibilities end with an attempt to /1 we are i n transition
CAS into the next state of the lock. If theas succeeds, in most ' ;/(mw&gﬁ:/bgg(f: Z\r?si)ti{on to transaction mode
cases we are done, unless we are switchipg modes,. in whieh cas if (11ockHel d(prev)) {
the CAS will just set the state to be in-transition, and will repee t // and the lock is no |onger held
loop until the new state is set. A faila@hs results in retrying, up useTransact = TRANS_MODE;
to a predefined threshold of timesp{ n_t hr | d) before yielding. next = set Thrdsl nSt mivbde(prev, 1);

When theacqui r e routine returns to its caller (not shown), the next = setTransition(next, FALSE);
adaptive lock is held in the appropriate mode, and the systdyn if (CAS(lock->state, prev, next) == prev) break;
needs to execute the corresponding version of the criteztion
(raw or transactional), per the return value. Transactioderexe- } else {

/1 we want to transition to nutex node
if (thrdslnStnmvde(prev) == 0) {

// and it seens we can do so
useTransact = MJTEX_MODE;

next = setlLockHel d(prev, TRUE);

cution also maintains statistics for the cost-benefit aiglypamely
it increments a counter for every transaction retry and camm

3.2 Performance Optimizations

The base implementation of adaptive locks described in@e8tl next = setTransition(next, FALSE);
can be elaborated with optimizations for maximal perforogan }' f (CAS(lock->state, prev, next) == prev) break;
3.2.1 Reducing accuracy to avoid bottlenecks % hld g
. - . i in_t < ++spi Yi ;
Adaptive locks keep global statistics, necessary for cdmgu }' /Esg'ng—whir | e(TRUE)SpL?S) heldO)

quantitiesc, a, ando of the adaptivity reasoning. Such statistics in-  pec(| ock- >t hdsBI ocked) ;
return useTransact;

31t is necessary for ensuring progress to choose the modg thincost- }

benefit analysis c_JnIy when the lock is not already _in trausitbth_erwise,

threads that decide to acquire the adaptive lock in mutexenmoight be Figure 1. The main routine for adaptive lock acquisition. Returns
waiting for all threads executing in transaction mode tosfiniYet new an integer indicating whether the lock was acquired in mutexle

threads can keep acquiring the lock in transaction mode matproblem,

; s : X or transaction mode.
thus causing the thread desiring to enter in mutex mode toferaver.



clude the ock- >t hdsBI ocked count, a count of transaction tries,
and a count of transaction commits. Because these coundstoee
be updated by every thread’s execution, they representalgiot-
tleneck for the performance of adaptive locks. Removing ltut-
tleneck is crucial for performance. Indeed, a first reactiboon-
currency experts has been that our approach cannot scaledeec
of the global bottleneck of keeping shared statistics orcked
threads and transaction tries and comrhits.

We address this problem by allowing small inaccuracies in
our statistics gathering. The inaccuracies can only infiaethe
performance of an adaptive lock (i.e., which mode it chapses
and not its correctness. For instance, quantityf the adaptivity
reasoning (the “actual contention”) is computed from ceuott
transaction tries and commits for the critical sectionhaligh we

This reduces the cost of adaptive lock acquisition. For mute

mode, the acquisition cost is one atomic instruction (areward

of state as a bottleneck) for an uncontested lock. For tciosa
mode, there is no spinning. The cost of this approach is gibigi
the optimized code has a slightly longer window of inaccyriac
the statistics, as spinning threads are not registeretithayi have
spinned once. (The original code also has a small race winithav
thread is accounted for twice between 4 andDEC.)

3.2.2 Approximating the transactional overhead

The transactional overhead factor,depends on the proportion of
shared memory operations (which become transactionas raadi
writes) in a transaction’s workload. For instance, tratisas that
work mostly with thread-local memory (including non-shaex-

make sure that these counts are not cached for long periods ofternal resources) will not incur a heavy overhead for exentih an

time (by usingvol ati | e variables), we do not update the counts
atomically. Instead, regular memory writes are performedilater
instructions serve as memory barriers, forcing a shared anem
update. This allows for races, including write-write rages.,
an update being lost because a different thread overwtitemi
practical use, the sporadic inaccuracies in such staistie not
significant, especially since the counts of tries and commaie
cumulative (although time-decayed).

STM, in contrast to transactions that perform many sharadong
operations. The relative mix of reads and writes also matte-
pending on the specifics of the STM implementation. For imsta
TL2 keeps the cost of reading shared memory low, and contains
special handling for read-only transactions. For thessares the
value of factoro varies widely between applications, as well as be-
tween different critical sections of the same application.

In our implementation, we perform a dynamic measurement

Another instance of reducing bottlenecks at some expense onoef 4, using architecture-specific instruction (or cycle, wheaila

accuracy can be seen in the treatment ofk- >t hdsBl ocked.
This counter has higher accuracy requirements than theicofin
transaction tries and commits, because it pertains to therdu
state of the lock only, instead of being cumulative (and tolerat-
ing more noise). Figure 1 contained code of the followingegeh
structure:

int acquire(al _t* lock) {
int spins =0; ...
I NC(1 ock- >t hdsBI ocked);
while (TRUE) {
. /1 try to acquire, break if successful
if (spin_thrld < ++spins) Yield();

}
DEC( | ock- >t hdsBI ocked) ;
}

This code keeps track of the precise current number of teread
blocked on the lock, i.e., threads that have attempted taigeq
the lock but have not yet succeeded. Nevertheless, the amele d
this by introducing atomic instructions before and aftansmg.
These can interfere unnecessarily with other threadsgrgrac-
quire the lock. Furthermore, in the case of execution indgaation
mode, these instructions are a no-op for all threads: Alatls do
an atomic increment, attempt to acquire the lock, succeet-in
quiring it in transaction mode, and immediately perform tmac
decrement. (The threads are still accounted for while dksgin
transaction mode, as their presence in the critical seiti@ilected
on variablet hr dsl nSt mvbde of the state, which is updated with
an atomicCAS instruction.) Thus, a first remedy is to eliminate the
atomic increment and decrement, except in the case of real sp
ning. The structure of the code thus becomes:

int acquire(al _t* lock) {
int spins =0; ...
while (TRUE) {
/1 try to acquire, break if successful
if (spins 0) I NC(I ock->t hdsBI ocked);
if (spin_thrld < ++spins) Yield();

}
if (0 < spins) DEC(l ock->thdsBl ocked);
}

4 Cliff Click, personal communication.

able) counters. Thus, we can estimatby measuring the execu-
tion time of a transaction, and dividing it by the executiimet
minus the time spent in the wrapper functions for transaetio
read/write memory operations (which closely approximates
time that would have been spent executing the critical sedti
lock mode). Getting good estimates for these times is cdsbhy-
ever. We found that sampling even the cheapest CPU perfaenan
counters can be prohibitive for transactions, which arecglly
quite brief. Furthermore, reading the values of perforneacmun-
ters on every TM read and write can disturb the behavior of the
transaction, by prolonging it.

To keep our estimate eofprecise yet inexpensive, we apply two
optimizations. First, the measurement is not performedanye
transactional execution, but only in specific samplingrives (cur-
rently every 512 calls). Second, we do not measure precis®ily
much time is spent in handling transactional reads and svrite
stead, we just keep a count of the numbers of each operatthn an
multiply these counts by a static estimate. This is just gor@p
imation (since the cost of reads and writes is not constafLin
or other STMs) but we have not found it to induce enough naise t
skew our decisions.

The result of our dynamic estimation of the overhead factar i
mechanism that adapts very well to the characteristicseoéfipli-
cation and critical section, while introducing negligiteerhead,
as we later show in our experiments (Section 5).

3.3 Sensitivity Discussion

Although the cost-benefit analysis of Section 2.2 is fullyeral,

our implementation is specialized for our back-end STM, ;Tar&d

somewhat reflects our intended execution platform. Namely:

e The main transactional overheads of TL2 are due to read and
write logging [6]. Therefore our estimate ofignores (i.e., ap-
proximates as a constant) other transactional overheads,as
the cost of acquiring locks, the cost of aborting a transactihe
cost of contention management (e.g., delaying a transadtio
re-validating the read-set in order to make progress). d biber
do not apply to TL2 or have been shown to be secondary factors.
Generally, to measure precisely, one needs to measure the full
end-to-end cost of equivalent executions in mutex mode and i
transaction mode. This is usually not feasible, as the sa&pen-
dent on other threads, semantic equivalence is hard tolisstab



etc. Therefore we expect that different realizations ofpéide
locks will need to employ appropriately specialized tegeis
for estimatingo.

e We have not found a need to employ more scalable locking or
counter techniques (e.g., avoidcas when the lock is in trans-
action mode). This may be partly because our primary exacuti
platform (a Sun Niagara2 architecture) uses a shared L2cach
Preliminary microbenchmarks, however, do not substanttzis
theory: we found that for much higher contention/shortansr
actions the performance of our technique would degraddautbs
tially on the same architecture. Still, an implementatipacial-
ized for other architectures (e.g., x86) may need to empiftgre
ent low-level scalability techniques.

4. Semantic Considerations

The transaction and mutex modes of adaptive locks are natyalw
equivalent. Although both mechanisms enforce isolationtem
locks also have barrier semantics for both lock acquisiéind re-
lease, ensuring that all preceding memory operations aigl@ito
all threads. This can produce surprising results if the gogner
uses adaptive locks with the expectation of getting the \iehaf
mutex locks. The main case of interest is thapo¥atization pat-
terns[20, 32]. We discuss privatization and present a checkable ¢
terion under which the execution of mutex and transactiodends
equivalent. The topic of the semantic differences betweeksl and
transactions has been covered in significant detail in pusviter-
ature [1, 12, 23, 32, 34], which can be consulted for morecingin
background than we can provide here.

Note that the idea of adaptive locks is orthogonal to suctesem
tic differences. For instance, adaptive locks can emplapm@sac-
tional memory system enforcing strong atomicity [32] orgén
global-lock semantics [23], which would avoid all semandiier-
ences with privatization patterns. Nevertheless, implaat®ns of
adaptive locks may opt to emphasize performance at the sgpen
of mutex-like semantics, therefore the discussion of taiien is
highly pertinent. In particular, our current implementatiof adap-
tive locks uses a TM that does exhibit semantic differences f
mutex locks.

Consider the following example, adapted from [32].

Thread 1 Thread 2
Item*item atom c (listlock) {
atomic (listlock) { if (lisEnpty(list)) {

Iltem*item =
getFirst(list);
item >val 1++;

item=
removeFirst(list);

int rl = item>vall; item >val 2++;
int r2 = item>val 2; }
/ICanrl !'=r27? }

Assume that the program wants to maintain the invariant
item>val 1 i tem >val 2 throughout the execution. If the
critical sections are executed in mutex mode, the above isarte-
rectly synchronized, with no race conditions, and the iiavaris
kept. The two accesses to the item values in thread 1 are safe b

the log to the written words in shared memory. In this exanipie
two transactions do not write to the same words. Therefeaiast
action 2 can commit “first” (i.e., validate its read of the fiidata
structure item before transaction 1 updates it) yet, whilgrites
to shared memory the changes teem >val 1 andi t em >val 2,
transaction 1 can commit, removitgemfrom the data structure
while it is being updated.

One way to view the problem is that TL2 guarantees the se-
rializability of transactions only for direct read-writeé write-
write conflicts, and not for indirect conflicts. In this exaepthe
transactional system has no way of knowing that the writes to
i tem >val 1 andit em >val 2 can conflict with the read actions
of Thread 1, since these are outside all transactions. kr ctses,
such conflicts would be races even in the mutex mode of exacuti
of an adaptive lock. Nevertheless, privatization is a spazse, as
it makes the data structure element invisible to any othesath

This observation leads to a simple criterion for the eqeivaé
of mutex mode and transaction mode execution of adaptivesioc
For each shared memory location there should be a lock, sheth t
every access to the shared memory location occurs with tie lo
held Indeed, this is the standalackset[31] well-formedness cri-
terion for multi-threaded programs. The lockset heuristis been
used (in its pure form or with various refinements) as thesbasi
of some of the best known race detectors and multi-threaded ¢
rectness checkers [9, 19, 31, 35]. We can check that a program
spects the lockset correctness condition using any of thisdie
or dynamic analyses. Note that this condition disallows iva-
tization example. If the program does respect the locksetrion,
then all possible (low-level) races are prevented by the ¥éfesn,
as shared data are always accessed while holding an adigtive
(i.e., inside a transaction, when in transaction mode)s Ghiaran-
tees the safety of transactional execution if mutex modegien
is safe.

5. Experimental Evaluation

To evaluate the effectiveness of adaptive locks, we peddrex-
periments with an array of microbenchmarks (for testingriataury
conditions) and macrobenchmarks. All measurements aréanmed

of 3 runs on a Sun UltraSparc T2 (Niagara2) T5220 machine (8
cores with 8 threads each for a total of 64 hardware thredds, a
1.2GHz; 32 GB RAM). We used GCC 4.0.4, and our implementa-
tion of adaptive locks uses version 0.9.4 of TL2, which i®dle
reference STM version we compare against in our plots.

5.1 Microbenchmarks

We stress-tested adaptive locks with microbenchmarkespand-
ing to standard mapping data structures: red-black trees) ta-
bles, and splay trees.

Red-black trees are the poster child benchmark for traioseadt
memory systems. Mutex-based red-black tree solutionsalipi
do not scale, as they use coarse-grained locking due to théigi
complexity of coding a fine-grained red-black tree. TM ajgoites
perform well because the data structure has low actual ctote

cause the item has been removed from the shared data structur (different operations can access different parts of the without

(“privatized”) and therefore cannot be accessed by otheatts—
there is no way to observe intermediate states with a changed

but notval 2. This is not, however, necessarily the case when the
critical sections are executed in transaction mode. Fdaite,
consider our current implementation of adaptive locks,civhises
TL2 [6] as its underlying TM system. TL2 uses a “deferred uptia
approach, where writes to memory are stored in alog. A tcitsa
commits by first locking all the memory words written by thas-
action, then validating all memory words read (by checkingjrt
“version numbers”) and finally copying the updated valuesrfr

conflicts) and can benefit from increased concurrency.

Splay trees, on the other hand, are pathologically bad fpkim
mentations that emphasize concurrency (such as TM) sirery ev
update to a part of the tree needs to change the root, whicmiees
a point of contention. Thus, the interesting question féaysfrees
is how to incur less overhead, rather than how to gain morewren
rency. We use a single-lock splay tree in our experiments.

We experimented with two fixed-size hash table implementa-
tions: one with coarse-grained locking (single lock peirertable)
and one with fine-grained locking (one lock per table bucké-
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Figure 2. Microbenchmarks: Data structures with different chanasties.Higher is betterNote that the fine-grained hash table plot includes

the coarse-grained mutex performance for reference.

urally, there is no difference in the performance of TM in the
implementations, but mutex locks perform better in thestatt
For each data structure we used a relatively high-contentio

threads. The stress-testing reveals small overheads iadaytive
locks, compared to a plain STM approach (see the differesee b
tween TM and adaptive locks in the red-black tree plot). T$due

workload with 50% lookup operations, 25% inserts and 25% to the cost of the adaptivity logic, as discussed in Sectigri3We

deletes. Each thread performs 100,000 operations totakedults

observed such overheads only in stress-testing scenatio®bin

are shown in Figure 2—note that these are throughput plots, s more realistic settings, so we have not emphasized remdhing

higher numbers are better. As can be seen, none of the berichma
scales perfectly to 64 threads, largely because of the siaallof
the data and the resulting contention, and possibly pagtabse
our hardware is not a full 64-way machine, but has 8 sepaoagsc
with 8 hardware threads each.

last bit of overhead. Compared to mutex locks, our adaptickd
have no measurable overhead, as seen in the splay tree mkchm
The microbenchmarks also help illustrate the effectiverafs
our optimizations described in Section 3.2.1. With the dimojzed
version of adaptive lock acquisition (code in Figure 1) tleefqr-

Adaptive locks succeed in closely tracking the performance mance of adaptive locks drops drastically, as the countepiof
of the better of the two component mechanisms for each bench-ning threads becomes a bottleneck even when in transactide.m

mark. This means that adaptive locks soundly outperforheeibf
the component mechanisms on its own. Statistically, oMemal
crobenchmarks and all thread configurations, adaptivesl@ck

The result is shown in Figure 3 for the red-black tree and hash
ble benchmark. Comparing with Figure 2 makes evident theeval
of the optimization. This also underscores the effectigeraf our

on average 47% faster than mutexes (min: -16%, max: 433%) adaptive locks: The challenge that our implementation sisetio

and 176% faster than transactions (min: -26%, max: 837%is(T

provide a mechanism that is sophisticated enough to clasely

should only be viewed as a summary of the figure data, as the ave late the behavior of mutexes or transactions, without irimgpan-

age does not map to a real-world quantity.) For red-bladstend
coarse-grained hash tables, adaptive locks imitate a nit&xor

low degrees of parallelism (1-2 threads) and a TM for moreatis,
outperforming the mutex-based implementation. For splags,
adaptive locks precisely match the performance of a plain mu
tex lock, outperforming the STM implementation. For fingiged
hash tables, adaptive locks emulate mutexes, yieldingtjattfor-
mance than TM for few threads and identical performance fmem

due overhead over these high-performance mechanisms.

5.2 Macrobenchmarks

For larger benchmarks of adaptive locks, we used the STAMP
(Stanford Transactional Applications for Multi-Proceggi bench-
mark suite [24], version 0.9.7. STAMP comprises 5 applaati
bayes(a bayesian network learning progranggenome(a gene
sequencing programXmeans(an implementation of K-means
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clustering),labyrinth (a maze routing program) anhcation (a
client/server travel reservation system). All STAMP apations
are written to employ a TM system explicitly. That is, the eod
contains explicit STM primitives (of the TL2 STM) for begiimg
atransaction, transactionally reading/writing a wordifto shared
memory, committing a transaction, etc. As discussed ini@e&,
our adaptive lock compiler supports a higher-level progreng
interface: all shared memory operations become impli¢idys-
actional loads/stores when executing in transaction méHere-
fore, the STAMP applications needed careful manual modifica
tion to ensure that the output of our compiler reflects theiori
nal hand-written code, and to introduce locking annotationthe
code. Our goal was to add only very coarse-grained lockiagjyve
alent to what a programmer would be able to add with minimal
effort and sophistication. Indeed, for four out of the fiveASMP
benchmarks (bayes, genome, labyrinth, vacation) we orthp-in
duced trivial locking: only a single global lock exists ftwetentire
application. For kmeans, 3 separate locks were introdugid,a
very localized code change (the critical sections for ath¢&k are

in a single file and in adjacent routines).

The performance of adaptive locks for the STAMP benchmarks
is illustrated in Figure 4. (The graphs plot execution tinseslower
is better.) For a statistical summary, over all STAMP benatks
and all thread configurations, adaptive locks are on avel&§éb6
faster than mutexes (min: -27%, max: 1021%) and 82% faster th
TM (min: -35%, max: 660%).

Adaptive locks track very closely, and even outperform tae b
ter of the two component mechanisms over all applications. F
labyrinth, adaptive locks imitate TM behavior and vastlytpas-
form mutex locks for all thread configurations. For kmeamgpa
tive locks imitate mutexes and outperform the TL2 STM for all
thread configurations. The behavior of bayes is unstabléshyai-
ture (the STAMP documentation reads “for multithreadedsrtine
running time can vary depending on the insertion order oéstjg
but adaptive locks consistently perform well for 4 or monetus.
More interesting behavior can be seen for genome and vacatio
where adaptive locks emulate mutexes for best performaitbeaw
low number of threads, while executing in transactional enadd
perfectly matching the performance of plain TL2 for highen
bers of threads. Occasionally, adaptivity is profitableneirethe
course of the same execution. For instance, for genome andl a 2
thread configuration, the adaptive lock version of the pogis
in mutex mode for the first part of the execution and in tratisac
mode for the last part, outperforming both mutexes and &etitns
alone.

Overall, the performance of adaptive locks for STAMP bench-
marks validates the approach very well. Our use of only @ars
grained adaptive locking illustrates the intended usagéenod the
mechanism. Adaptive locks simplify the multi-threadedgrem-
ming model, by allowing the programmer to write coarseuzéli
annotations and achieve easy multi-threaded correcthbsscon-
venience comes without sacrificing concurrent performaite
adaptivity mechanism can detect when coarse-grainedrgdki
too conservative and recover concurrency (as if using fragxgd
locks) by executing in transaction mode.

6. Related Work

We discussed directly related work throughout the previeers
tions. Here we outline some work that is less directly relateet
offers context for our work, or explores closely relatecedtions
in different settings.

Transactions originated in the databases research litergt1]
before they transitioned to general-purpose programminghé
form of transactional memory [17]. Although the principlase
similar, the challenges in the two domains are quite ditiRor
instance, TM has to allow for arbitrary memory accesses and,
thus, cannot generally predict all locks that need to be isedu
Furthermore, the granularity of access is finer in TM, cregtiery
different trade-offs for high-performance implementatio

In the database world, our adaptive locks might be described
as a mechanism adapting betwemgtimistic concurrency control
and pessimistic concurrency controlhe term “optimistic” refers
to allowing transactions to proceed in the hope that thel vait
conflict, while installing mechanisms to detect such cotglidhe
term “pessimistic” refers to acquiring locks up front, sattlany
transactions that have the possibility of conflict end ujesieing.
Database researchers have explored combinations of sptirand
pessimistic concurrency control, and so have researcheasto-
matic parallelization [7, 30]. The options are sometimad sabe
akin to “apologizing versus asking permission” [16]. Thetexu
mode of our adaptive locks is an ultra-pessimistic mechanés it
forces all transactions to “ask permission” up front. Reiogi per-
mission means that the transaction can proceed and is geadan
to not roll back: it has effectively “reserved” the right terfiorm its
memory operations.

In the TM literature, the terms “optimistic”/“pessimistitypi-
cally have a more nuanced meaning, however. “Pessimigiets
to acquiring locks before accessing shared memory datahbsé
locks can be at the memory word granularity. Thus, only iiaizl
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memory operations and not entire transactions “ask peioniss
Therefore, pessimistic TM can be best viewed as an impleanent
tion choice for TM and is otherwise not semantically diffgrrom
optimistic TM. Notably, transactions in pessimistic TM ilemen-
tations (e.g., [8, 28]) can still roll-back and retry: thisriecessary
to guarantee the absence of deadlock. Our adaptive locksoaee
hybrid optimistic-pessimistic mechanism in this sense.

The PhTM [21] system is related to our work in that it descgibe
a mechanism for dynamically switching synchronization haee
ims. Nevertheless, our work advances the PhTM ideas in &ever
ways. First, PhTM introduces only a single global lock iaste
of individual locks. Second, although the PhnTMEQUENTIAL-
NOABORT’ mode supports switching to lock-based execution, the
PhTM prototype does not support such switching. In fact, the
PhTM authors speculate, “we can likely improve performaince
most cases by monitoring progress of transactions, coainait!
rates, status of transactions with respect to the curredemetc.”
and conclude that “[fluture work includes ... mechanismsde-
ciding when to switch to what mode.” Our work directly addes
these topics.

Our exploration of adaptive locks is in the context of a pufe-s
ware implementation. An important trend is to provide haackv
support for TM [10, 25, 26]. With hardware support, the perfo
mance trade-offs change—e.g., the transactional overbfdadds
and stores may be virtually eliminated. Yet the idea of adapt
locks should be quite applicable to hardware TMs: even with n
overhead for TM execution, it will be beneficial to adaptjveétect
when transactions have high actual contention and mutudili-ex
sion would be profitable. Furthermore, most hardware sugpor
TM employs a hybrid software-hardware approach. For irtgan
transactions that access shared data in excess of a pra@ehia
will need to be implemented in software, making our apprqzer
fectly applicable. Finally, many of the ideas of this papan de
employed in hardware mechanisms such as speculative léck el
sion [29] or optimistic thread concurrency [10], which (@ssally)
attempt to execute critical sections transactionally.

7. Conclusions

We presented the idea aflaptive locksas a concurrency control
construct for multi-threaded programming. A major conitibn
of our work is in identifying the statistics needed for areeffve
cost-benefit adaptivity analysis and in developing medrasifor
maintaining such statistics highly efficiently. Overalle believe
that our work establishes adaptive locks as an excellertidate
for inclusion in industrial-strength systems.
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