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Abstract
Transactional memory is being advanced as an alternative totra-
ditional lock-based synchronization for concurrent programming.
Transactional memory simplifies the programming model and max-
imizes concurrency. At the same time, transactions can suffer from
interference that causes them to often abort, from heavy overheads
for memory accesses, and from expressiveness limitations (e.g., for
I/O operations). In this paper we propose an adaptive locking tech-
nique that dynamically observes whether a critical sectionwould
be best executed transactionally or while holding a mutex lock.
The critical new elements of our approach include the adaptivity
logic and cost-benefit analysis, a low-overhead implementation of
statistics collection and adaptive locking in a full C compiler, and
an exposition of the effects on the programming model. In experi-
ments with both micro- and macro-benchmarks we found adaptive
locks to consistently match or outperform the better of the two com-
ponent mechanisms (mutexes or transactions). Compared to either
mechanism alone, adaptive locks often provide 3-to-10x speedups.
Additionally, adaptive locks simplify the programming model by re-
ducing the need for fine-grained locking: with adaptive locks, the
programmer can specify coarse-grained locking annotations and
often achieve fine-grained locking performance due to the transac-
tional memory mechanisms.

1. Introduction
Multi-core processors are turning shared-memory parallelism into
the default model of computation for mainstream software devel-
opment. Although there are ways to take advantage of such par-
allelism through different high-level paradigms (e.g., stream pro-
cessing or message passing) explicit multi-threading remains the
most direct way to program parallel systems and its importance is
undoubted for years to come.

In the multi-threaded programming world, interference between
threads is a major issue and results in hard-to-trace defects such
as race conditions or deadlocks. Traditionally, programmers have
coordinated threads using variants ofmonitor-styleprogramming:
a programming style based on the dual abstractions of mutual-
exclusion (mutex) locks, and condition variables.

In recent years, an alternative model has been proposed for
thread coordination.Transactional memory(TM) replaces mutexes
and condition variables with “atomic” blocks of code, that are
meant to execute as if all other threads had stopped running dur-
ing the execution of the atomic block. Transactional memoryhas
intrigued both software and hardware designers, and many ma-
jor processor manufacturers have already announced support for
TM in upcoming architectures. The advantage of TM is twofold:
First, it offers a higher-level programming model by obviating the
need for stating which locks to acquire. This means that codeis
more composable: Callers do not need to know which locks their
callees hold, and writing code does not require global knowledge
of which locks are used by possibly interfering threads. Thepossi-
bility of low-level deadlock is also avoided, as there is no potential
for the programmer to erroneously specify circular lock dependen-

cies. Furthermore, TM does not require fine-grained delineation of
critical sections in order to achieve high concurrency. Most trans-
actional memory implementations allow threads to proceed unless
they interfere on the same shared memory data. In contrast, mutex
locks conservatively prevent threads from proceeding if they need
to acquire the same lock, even if they never access the same data.

The TM approach is not free of disadvantages, however. Trans-
actions eliminate deadlock, but replace it with a higher probability
of livelock or slower progress: Interfering threads can cause each
other’s transactions to abort and retry. Furthermore, transactions
cannot easily support irreversible operations, such as I/O, despite
several proposals in this direction (e.g., [2, 13, 33]). Finally, when
transactions are implemented in software they can suffer from high
overheads during the execution of atomic blocks: Every shared
memory read and write operation needs to be trapped and treated
specially by the TM runtime system. The overheads have led some
authors to even claim that software transactional memory is“only
a research toy” [4].

In this paper, we presentadaptive locks: a synchronization
mechanism combining locks and transactions for best performance.
In our approach, the programmer specifies critical sections, which
can be executed either with mutual exclusion or atomically as trans-
actions. For instance a critical section
atomic (l1) { ... }

is equivalent to either
atomic { ... }

(when the system executes intransaction mode) or
lock(l1); ... unlock(l1);

(when the system executes inmutex mode). At any point in time,
all critical sections that use the same lock,l1, have to execute in
the same mode.

The decision to execute in mutex mode or in transaction mode
depends on the observed behavior of the critical section, namely on
thenominal contention(how many threads are blocked on the lock
when in mutex mode), theactual contention(how many times each
transaction retries when in transaction mode), and thetransactional
overhead(how much slower is the critical section when in transac-
tion mode compared to mutex mode). Our adaptive locks compute
these three factors dynamically during the program’s execution and
combine them for an accurate cost-benefit analysis, as described
in Section 2. We present techniques for performing this compu-
tation highly efficiently. The overall adaptive lock implementation
imposes very low overhead compared to either a regular mutexlock
or a transaction, as described in Section 3.

Generally, however, the adaptive locks programming model re-
sembles mutex locks more than it does transactions. For instance,
the deadlock-freedom and composability guarantees of transactions
are not preserved, since our critical sections may execute in mutex
lock mode. It is, therefore, important to ask, “are adaptivelocks
just an optimized implementation of locks?” Based on the ben-
efits observed in our evaluation, we argue that the practicalim-
pact of adaptive locks is much more than that. We believe that
adaptive locks significantly change the programming model for
concurrency. Adaptive locks allow the programmer to concentrate



only on coarse-grainedlocking approaches, instead of trying to
achieve more performance by introducing error-pronefine-grained
locks. The performance of fine-grained locks is then often fully
recovered automatically by employing the transactional memory
mechanism when appropriate. All our benchmark measurements
are implemented with very coarse-grained lock annotations(often
a single global lock, which trivially has good composability and
deadlock-freedom properties), yet still achieve significant perfor-
mance improvements. (Indeed, such coarse-grained locks can also
be automatically inferred for correctness–e.g., [3].) Thus, adaptive
locks encourage programmers to use locks at whichever levelof ab-
straction correctness is easy to establish, and not at the granularity
needed for performance.

Our work’s closest relatives in the research literature areRajwar
and Goodman’slock elision [29] and Welc et al.’stransactional
monitors[36]. (There is more work that is related at the conceptual
level—e.g., in database transactions—and we discuss this in Sec-
tion 6.) Lock elision is a hardware technique for (effectively) im-
plementing locks as low-level transactions, but with no clear cost-
benefit model, as the one we introduce. Welc et al.’s transactional
monitors implement locks optimistically as soon as the monitor en-
counters contention. Again, there is no dynamic cost-benefit model
for the two modes of execution, or a possibility of revertingback to
locks if the TM mechanism turns out to be inefficient. Welc et al.
acknowledge the need for more adaptive solutions, which ourwork
provides. Finally, the work in this paper is an evolution andcon-
crete realization of thenon-blocking locksidea that we presented in
an earlier position paper [34]. Overall, our concrete contributions
are as follows:

• We present a highly efficient and effective implementation of
the concept of adaptive locks. Our adaptive locks keep precise
statistics on the behavior of the program, while introducing very
low overhead: acquiring an adaptive lock is practically no more
costly than acquiring a mutex lock. Importantly, this removes all
performance arguments against Software Transactional Memory
[4]: transactions are used only when they yield benefits, andincur
no overhead otherwise. We describe the optimizations responsible
for our mechanism’s efficiency—e.g., trading some inaccuracy in
our statistics in exchange for shortening the critical pathof lock
acquisition and avoiding bottlenecks. Our implementationis in
the form of a full C compiler, based on the CIL framework [27],
and is freely available for download (making it one of the most
mature open-source platforms for TM research).

• We define conditions under which transactional and mutex-
based execution of critical sections yields equivalent behavior (or,
equivalently, our adaptive locks can be used as a transparent re-
placement of mutex locks). The conditions are easily checked by
numerous past static and dynamic analyses for race detection.

• We evaluate adaptive locks with several micro- and macro-
benchmarks. Our evaluation shows that adaptive locks combine
the performance benefits of mutex locks and transactions. Inev-
ery case, the performance of adaptive locks closely matchesthe
performance of the better of the two component mechanisms.
This allows adaptive locks to achieve the highest possible per-
formance not just for different applications, but also for different
configurations of the same application (e.g., 3x faster thanTM for
2 processors, 3x faster than mutex locks for 64 processors).Com-
pared to either mutex locks or transactions alone, adaptivelocks
routinely achieve order-of-magnitude performance improvements
by emulating the performance of the complementary mechanism.
Adaptive locks occasionally outperform both component mecha-
nisms at the same time, by up to 50%, due to the varied contention
behavior of different application phases.

2. Design and Adaptivity Logic
We next discuss the concept of adaptive locks, as well as the cost-
benefit logic that the locks implement in order to choose their
optimal execution mode.

2.1 Programming with Adaptive Locks

Adaptive locks introduce syntax for a labeled atomic section. This
is a block structured construct, headed by the keywordatomicwith
a label indicating which adaptive lock protects the code statement
(usually a block statement) that follows. By convention, inthis
paper (as well as in our implementation) adaptive locks are declared
as instances of typeal t, e.g.:
al_t lock1; ...
atomic (lock1) {
... // critical section

}

The programmer is responsible for ensuring that the lock la-
bels are “correct”—i.e., that the program will work correctly if
all instances ofatomic(<lckLbl>) are replaced by a regular mu-
tex,Lock(<lckLbl>). (We assume a block-structured mutex lock,
with an unlock performed at the end of the block.)

This condition is necessary but not sufficient: the program-
mer also has the obligation to ensure that the program is
equally correct if all lock labels are dropped and all critical sec-
tionsatomic(<lckLbl>)<stmt> execute as transactions,atomic
<stmt>, in a conventional TM system (e.g., [14,15,32]). The rea-
son is that transactions have subtly different behavior from mutex
locks. We will discuss this topic in Section 4, where we also offer a
general condition for the semantic equivalence of transactions and
mutexes. Note, however, that adaptive locks do not support trans-
actional constructs that rely on retrying (such as an explicit retry
or abort statement).

The adaptive lock implementation is, thus, free to execute the
critical section it protects either as a transaction or as a critical sec-
tion protected by a mutex lock.1 As mentioned in the Introduction,
we say that the adaptive lock is intransaction modeor in mutex
mode, respectively. All critical sections associated with the same
adaptive lock have to execute in the same mode at a given time.If a
thread tries to acquire an adaptive lock and decides it wantsto exe-
cute in a different mode than the current one, it marks the adaptive
lock “in-transition” and waits until all current critical sections exe-
cuting with this lock finish. (Clearly, there is more than onecritical
section executing only if the adaptive lock is in transaction mode.)
While the lock is in-transition, no further mode switching decisions
can be made. Furthermore, in the case of lock nesting, the mode of
a nested adaptive lock cannot differ from the mode of a surrounding
lock.

The reasons for switching the mode of an adaptive lock are
either correctness- or performance-related. In the formercase, if the
lock is executing in transaction mode and an irreversible operation
is called (e.g., I/O) the (outermost) critical section restarts in mutex
mode. The latter case captures the heuristic at the core of adaptive
locks, for deciding when to switch modes in order to improve
performance.

1 One can argue that the terms “transaction” and “mutex lock” refer to pro-
gramming models, rather than implementation mechanisms. E.g., transac-
tions can be implemented by a mechanism that guarantees exclusion, or
mutex locks can be implemented speculatively. In this paper, we use the
terms to refer to the implementation mechanisms overwhelmingly asso-
ciated with them in common practice. We have found this to be best for
communications purposes: when describing our work, listeners have been
more likely to grasp it quickly if we explain it as a “mechanism adapting
between mutex locks and transactions” rather than as a “mechanism adapt-
ing between speculative and non-speculative locks, where the speculation
is implemented through TM techniques”.



2.2 Cost-Benefit Analysis

The main reason for executing an adaptive lock in transaction mode
is that mutex locks can exhibitfalse exclusion[30]. A single mutex
lock is commonly used to protect a large amount of shared data—
an approach known ascoarse grained locking. In this way, multiple
threads are blocked from accessing the data, even in cases when
they would not really conflict. Programmers use coarse grained
locking because it is often far easier than trying to correctly asso-
ciate locks with smaller amounts of data. Several domains and data
structures (e.g., red-black trees) are notoriously difficult to code
with a fine-grained locking discipline.

Therefore, the performance benefit of transactions is due to
higher concurrency: More threads can execute the same critical sec-
tion with transactions than with mutexes. Assuming that separate
processors exist to run these threads, a net performance increase
(speedup equal to the level of concurrency) can result.

At the same time, executing an adaptive lock in transaction
mode incurs high overheads when there is true contention on the
data. In this case, different threads interfere with each other, pre-
venting the successful commit of transactions. Therefore,transac-
tions have to retry multiple times before they successfullycommit,
and the result is slower progress, or even livelock. The problem
is solved when switching to mutex mode because the thread “re-
serves” the right to run up-front, thus making progress without in-
terference.

A second factor hindering the performance of transaction mode
is that, in pure-software TM, there is typically a high overhead as-
sociated with executing a critical section transactionally. Software
transactional memory (STM)systems need to execute logging ac-
tions on each read or write operation of shared memory data. De-
pending on the design of the STM, the logged values are eitherused
to update shared memory on transaction commit (redo-logging), or
to revert shared memory to its previous state on transactionabort
(undo-logging).2 A second overhead is due to the need to perform
synchronization operations (e.g., acquiring locks associated with
each written word) to ensure consistent memory writes. The need
for logging actions and synchronization imposes a heavy overhead
on shared memory operations and often slows down transaction
mode execution of critical sections by a significant factor (e.g., 2-
8x). Additionally, STM implementations often impose extraover-
heads for policy-specific reasons—e.g., re-validating theread set
when a conflict is detected, incurring cost for aborting, etc.

Therefore the adaptive lock analysis of whether to execute in
transaction mode or mutex mode has to take into account three
factors:
• Nominal contention(c): the number of threads contending for

the lock. This quantifies the potentialbenefit of executing in
transaction mode instead of mutex mode. The quantity can be
measured by keeping a counter of how many threads are blocked
on the lock when in mutex mode. When in transaction mode,c

is equal the number of threads currently executing the critical
section.

• Actual contention(a): the number of times a transaction needs
to try before it commits. This quantifies the contention by other
threads on the actual data the critical section tries to access. The
quantity is a multiplicative factor in thecost of executing the
critical section in transaction mode.

2 A few STM systems suffer no such overhead [5, 18, 22], by translating
transactions into lock acquisitions and releases in a way that guarantees
deadlock-freedom (and, thus, the transaction never needs to retry). The
performance of such “auto-locking” systems depends crucially on (non-
modular) compiler analysis or program annotation. No representative of this
approach has yet achieved the same level of performance as standard STMs
(pessimistic or optimistic) in a general-purpose, fully automatic setting.

• Transactional overhead(o): the slowdown factor due to trans-
actional execution, because of the need to trap shared memory
reads and writes, the need to synchronize, the need to re-validate
as part of a complex contention management policy, etc. Thisis a
multiplicative factor in thecostof transaction mode.

Thus, the cost-benefit analysis of adaptive locks is based onthe
inequality:

a · o ≥ c

(The two sides correspond to the overheads of each mode of exe-
cution relative to an idealized, no-contention execution.All three
factors are computed separately for each adaptive lock, since the
decision on which mode to execute affects all critical sections of the
lock.) If this inequality holds, mutex mode execution is preferable,
otherwise the benefit of transaction mode execution outweighs its
cost. Note that the analysis applies and a trade-off exists even if
transactional execution incurs no overhead (o = 1), e.g., through
the use of specialized hardware.

The above cost-benefit analysis isexactand not approximate,
yet approximations need to be introduced because, for instance,
it is hard to measure the overheado fully accurately, factora is
predictive of future executions so it needs to be estimated from
past data, etc. As we describe next, factorsc anda are computed
dynamically at all times. Factoro is also computed dynamically
by sampling a subset of the executions—an approach that proved
superior to off-line estimates in our measurements due to the high
variance ofo for different applications and locks.

To see the advantage of having a complete model for cost and
benefit, consider, for instance, the adaptivity approach followed by
Welc et al. [36]. Their technique converts a critical section to a
transactional implementation as soon asanycontention is observed,
i.e., as soon asc is more than 1. This completely disregards the
costs of transactional execution and results in obtaining good be-
havior only for transaction-friendly workloads.

3. Implementation and Optimizations
We next describe our implementation of adaptive locks. We selec-
tively present key components that expose the precise logic(e.g.,
behavior when an adaptive lock is in the process of switching
modes) or reveal crucial elements for high performance.

3.1 Compiler and Locking Mechanism

We have implemented adaptive locks in a conservative exten-
sion of the C language. Our compiler is based on the CIL in-
frastructure [27] for extensible C compilers. A special pragma
at the function level is used to supplyatomic annotations: the
entire body of the function is then considered to be protected
by the corresponding adaptive lock. The compiler translates each
function body with atomic annotations into two different ob-
ject code versions: araw version, used for mutex mode execu-
tion and incurring no further overheads, and atransactional ver-
sion, where all shared memory reads and writes become trans-
actional memory operations for an underlying STM. We use
TL2 [6], a high-performance STM library, as our back-end STM.
Our implementation is freely available (current working version
at http://ix.cs.uoregon.edu/∼takayuki/al/) and repre-
sents one of the most mature open-source compiler infrastructures
for STM experimentation. Other researchers can build on ourcom-
piler support for TM by modifying our CIL patterns to producefull
compilers either for different TM constructs or for different back-
end TM implementations.

Our implementation of adaptive locks replaces regular lockac-
quisition and release with versions that perform the adaptive rea-
soning. We use a standard pattern for high-performance synchro-
nization: The adaptive lock’s state is packed in a memory word



and we represent bit blocks as different pseudo-variables.The
components of the state include the number of threads execut-
ing in transaction mode (thrdsInStmMode), whether we are cur-
rently in mutex mode (mutexMode), whether the mutex lock is
held (lockHeld), and whether we are currently in the process
of switching modes (transition). The next state is then com-
puted and updated atomically with a compare-and-swap (CAS) in-
struction. The thread spins, retrying the state update until the CAS
succeeds, or until exceeding a number of tries, in which caseit
has to yield the CPU. These elements are illustrated precisely in
the main workhorse of the lock acquisition process: theacquire
routine, shown in Figure 1. (This code omits an optimizationdis-
cussed in detail in Section 3.2.1.) The routine is called every time a
thread attempts to acquire an adaptive lock. The return value indi-
cates whether the adaptive lock was acquired in transactionmode
(TRANS MODE) or mutex mode (MUTEX MODE). The code is simple
but introducing some conventions is helpful:
• The separate bit ranges of both the current state (prev) and

the next state (next) are set through macros maintaining the
naming convention. For instance, checking thelockHeld bit of
the current state is done with the expressionlockHeld(prev)
whereas setting the same bit to 1 on the next state is done with
the callsetLockHeld(next,1). We useTRUE andFALSE for 1
and 0, respectively, when the bit value represents a boolean.

• Atomic operations are shown in all capital letters.INC, DEC, and
CAS call (directly or indirectly) atomic instructions. This will be
important when we discuss performance optimizations.

• Each adaptive lock holds data for computing its adaptivity statis-
tics. These data are not accessed directly in the code of Fig-
ure 1, with the exception oflock->thdsBlocked: a counter of
threads blocked on the lock, if the lock is in mutex mode—adding
thrdsInStmMode yields the c factor from Section 2.2. For
its adaptivity logic, theacquire routine callstransactMode
which implements the cost-benefit analysis of Section 2.2 and re-
turns the estimated best mode for the adaptive lock.

We can now see precisely the behavior of adaptive locks. If the
lock is not already in a state of transition from one mode to the
other then the cost-benefit analysis is performed to see whatis the
optimal execution mode.3 All possibilities end with an attempt to
CAS into the next state of the lock. If theCAS succeeds, in most
cases we are done, unless we are switching modes, in which case
theCAS will just set the state to be in-transition, and will repeat the
loop until the new state is set. A failedCAS results in retrying, up
to a predefined threshold of times (spin thrld) before yielding.

When theacquire routine returns to its caller (not shown), the
adaptive lock is held in the appropriate mode, and the systemonly
needs to execute the corresponding version of the critical section
(raw or transactional), per the return value. Transaction mode exe-
cution also maintains statistics for the cost-benefit analysis, namely
it increments a counter for every transaction retry and commit.

3.2 Performance Optimizations

The base implementation of adaptive locks described in Section 3.1
can be elaborated with optimizations for maximal performance.

3.2.1 Reducing accuracy to avoid bottlenecks

Adaptive locks keep global statistics, necessary for computing
quantitiesc, a, ando of the adaptivity reasoning. Such statistics in-

3 It is necessary for ensuring progress to choose the mode using the cost-
benefit analysis only when the lock is not already in transition. Otherwise,
threads that decide to acquire the adaptive lock in mutex mode might be
waiting for all threads executing in transaction mode to finish. Yet new
threads can keep acquiring the lock in transaction mode withno problem,
thus causing the thread desiring to enter in mutex mode to wait forever.

Mode acquire(al_t* lock) {
int spins = 0;
int useTransact = MUTEX_MODE;

INC(lock->thdsBlocked);
while (TRUE) {
intptr_t prev,next;
prev = lock->state;
if (!transition(prev)) {
// we are not already in transition
if ((useTransact = transactMode(lock,spins)) ==

TRANS_MODE)
{
// we are better off in transaction mode
if (!lockHeld(prev)) {
// the lock is free or in transaction mode
next = setMutexMode(prev, FALSE);
next = setThrdsInStmMode(next,

thrdsInStmMode(next)+1);
if (CAS(lock->state,prev,next) == prev) break;

} else {
// the lock is in mutex mode. Need transition
next = setMutexMode(prev, FALSE);
next = setTransition(next, TRUE);
CAS(lock->state,prev,next);

}
} else {
// we are better off in mutex mode
if (!lockHeld(prev) &&

thrdsInStmMode(prev) == 0)
{
// the lock is free, no threads in crit.sec.
next = setMutexMode(prev, TRUE);
next = setLockHeld(next, TRUE);
if (CAS(lock->state,prev,next) == prev) break;

} else if (!mutexMode(prev)) {
// lock is currently in transaction mode
next = setMutexMode(prev, TRUE);
next = setTransition(next, TRUE);
CAS(lock->state,prev,next);

}
}

} else {
// we are in transition
if (!mutexMode(prev)) {
// we want to transition to transaction mode
if (!lockHeld(prev)) {
// and the lock is no longer held
useTransact = TRANS_MODE;
next = setThrdsInStmMode(prev, 1);
next = setTransition(next, FALSE);
if (CAS(lock->state,prev,next) == prev) break;

}
} else {
// we want to transition to mutex mode
if (thrdsInStmMode(prev) == 0) {
// and it seems we can do so
useTransact = MUTEX_MODE;
next = setLockHeld(prev, TRUE);
next = setTransition(next, FALSE);
if (CAS(lock->state,prev,next) == prev) break;

}
}

if (spin_thrld < ++spins) Yield();
} /* end while(TRUE) */
DEC(lock->thdsBlocked);
return useTransact;

}

Figure 1. The main routine for adaptive lock acquisition. Returns
an integer indicating whether the lock was acquired in mutexmode
or transaction mode.



clude thelock->thdsBlocked count, a count of transaction tries,
and a count of transaction commits. Because these counts need to
be updated by every thread’s execution, they represent a global bot-
tleneck for the performance of adaptive locks. Removing this bot-
tleneck is crucial for performance. Indeed, a first reactionof con-
currency experts has been that our approach cannot scale because
of the global bottleneck of keeping shared statistics on blocked
threads and transaction tries and commits.4

We address this problem by allowing small inaccuracies in
our statistics gathering. The inaccuracies can only influence the
performance of an adaptive lock (i.e., which mode it chooses)
and not its correctness. For instance, quantitya of the adaptivity
reasoning (the “actual contention”) is computed from counts of
transaction tries and commits for the critical section. Although we
make sure that these counts are not cached for long periods of
time (by usingvolatile variables), we do not update the counts
atomically. Instead, regular memory writes are performed and later
instructions serve as memory barriers, forcing a shared memory
update. This allows for races, including write-write races(i.e.,
an update being lost because a different thread overwrites it). In
practical use, the sporadic inaccuracies in such statistics are not
significant, especially since the counts of tries and commits are
cumulative (although time-decayed).

Another instance of reducing bottlenecks at some expense on
accuracy can be seen in the treatment oflock->thdsBlocked.
This counter has higher accuracy requirements than the counts of
transaction tries and commits, because it pertains to the current
state of the lock only, instead of being cumulative (and thustolerat-
ing more noise). Figure 1 contained code of the following general
structure:

int acquire(al_t* lock) {
int spins = 0; ...
INC(lock->thdsBlocked);
while (TRUE) {
... // try to acquire, break if successful
if (spin_thrld < ++spins) Yield();

}
DEC(lock->thdsBlocked); ...

}

This code keeps track of the precise current number of threads
blocked on the lock, i.e., threads that have attempted to acquire
the lock but have not yet succeeded. Nevertheless, the code does
this by introducing atomic instructions before and after spinning.
These can interfere unnecessarily with other threads trying to ac-
quire the lock. Furthermore, in the case of execution in transaction
mode, these instructions are a no-op for all threads: All threads do
an atomic increment, attempt to acquire the lock, succeed inac-
quiring it in transaction mode, and immediately perform an atomic
decrement. (The threads are still accounted for while executing in
transaction mode, as their presence in the critical sectionis reflected
on variablethrdsInStmMode of the state, which is updated with
an atomicCAS instruction.) Thus, a first remedy is to eliminate the
atomic increment and decrement, except in the case of real spin-
ning. The structure of the code thus becomes:

int acquire(al_t* lock) {
int spins = 0; ...
while (TRUE) {
... // try to acquire, break if successful
if (spins == 0) INC(lock->thdsBlocked);
if (spin_thrld < ++spins) Yield();

}
if (0 < spins) DEC(lock->thdsBlocked); ...

}

4 Cliff Click, personal communication.

This reduces the cost of adaptive lock acquisition. For mutex
mode, the acquisition cost is one atomic instruction (and one word
of state as a bottleneck) for an uncontested lock. For transaction
mode, there is no spinning. The cost of this approach is negligible:
the optimized code has a slightly longer window of inaccuracy in
the statistics, as spinning threads are not registered until they have
spinned once. (The original code also has a small race window: the
thread is accounted for twice between theCAS andDEC.)

3.2.2 Approximating the transactional overhead

The transactional overhead factor,o, depends on the proportion of
shared memory operations (which become transactional reads and
writes) in a transaction’s workload. For instance, transactions that
work mostly with thread-local memory (including non-shared ex-
ternal resources) will not incur a heavy overhead for execution in an
STM, in contrast to transactions that perform many shared memory
operations. The relative mix of reads and writes also matters, de-
pending on the specifics of the STM implementation. For instance,
TL2 keeps the cost of reading shared memory low, and contains
special handling for read-only transactions. For these reasons, the
value of factoro varies widely between applications, as well as be-
tween different critical sections of the same application.

In our implementation, we perform a dynamic measurement
of o, using architecture-specific instruction (or cycle, when avail-
able) counters. Thus, we can estimateo by measuring the execu-
tion time of a transaction, and dividing it by the execution time
minus the time spent in the wrapper functions for transactional
read/write memory operations (which closely approximatesthe
time that would have been spent executing the critical section in
lock mode). Getting good estimates for these times is costly, how-
ever. We found that sampling even the cheapest CPU performance
counters can be prohibitive for transactions, which are typically
quite brief. Furthermore, reading the values of performance coun-
ters on every TM read and write can disturb the behavior of the
transaction, by prolonging it.

To keep our estimate ofo precise yet inexpensive, we apply two
optimizations. First, the measurement is not performed on every
transactional execution, but only in specific sampling intervals (cur-
rently every 512 calls). Second, we do not measure preciselyhow
much time is spent in handling transactional reads and writes. In-
stead, we just keep a count of the numbers of each operation and
multiply these counts by a static estimate. This is just an approx-
imation (since the cost of reads and writes is not constant inTL2
or other STMs) but we have not found it to induce enough noise to
skew our decisions.

The result of our dynamic estimation of the overhead factor is a
mechanism that adapts very well to the characteristics of the appli-
cation and critical section, while introducing negligibleoverhead,
as we later show in our experiments (Section 5).

3.3 Sensitivity Discussion

Although the cost-benefit analysis of Section 2.2 is fully general,
our implementation is specialized for our back-end STM, TL2, and
somewhat reflects our intended execution platform. Namely:
• The main transactional overheads of TL2 are due to read and

write logging [6]. Therefore our estimate ofo ignores (i.e., ap-
proximates as a constant) other transactional overheads, such as
the cost of acquiring locks, the cost of aborting a transaction, the
cost of contention management (e.g., delaying a transaction or
re-validating the read-set in order to make progress). These either
do not apply to TL2 or have been shown to be secondary factors.
Generally, to measureo precisely, one needs to measure the full
end-to-end cost of equivalent executions in mutex mode and in
transaction mode. This is usually not feasible, as the cost is depen-
dent on other threads, semantic equivalence is hard to establish,



etc. Therefore we expect that different realizations of adaptive
locks will need to employ appropriately specialized techniques
for estimatingo.

• We have not found a need to employ more scalable locking or
counter techniques (e.g., avoid aCAS when the lock is in trans-
action mode). This may be partly because our primary execution
platform (a Sun Niagara2 architecture) uses a shared L2 cache.
Preliminary microbenchmarks, however, do not substantiate this
theory: we found that for much higher contention/shorter trans-
actions the performance of our technique would degrade substan-
tially on the same architecture. Still, an implementation special-
ized for other architectures (e.g., x86) may need to employ differ-
ent low-level scalability techniques.

4. Semantic Considerations
The transaction and mutex modes of adaptive locks are not always
equivalent. Although both mechanisms enforce isolation, mutex
locks also have barrier semantics for both lock acquisitionand re-
lease, ensuring that all preceding memory operations are visible to
all threads. This can produce surprising results if the programmer
uses adaptive locks with the expectation of getting the behavior of
mutex locks. The main case of interest is that ofprivatization pat-
terns[20,32]. We discuss privatization and present a checkable cri-
terion under which the execution of mutex and transaction modes is
equivalent. The topic of the semantic differences between locks and
transactions has been covered in significant detail in previous liter-
ature [1, 12, 23, 32, 34], which can be consulted for more thorough
background than we can provide here.

Note that the idea of adaptive locks is orthogonal to such seman-
tic differences. For instance, adaptive locks can employ a transac-
tional memory system enforcing strong atomicity [32] or single-
global-lock semantics [23], which would avoid all semanticdiffer-
ences with privatization patterns. Nevertheless, implementations of
adaptive locks may opt to emphasize performance at the expense
of mutex-like semantics, therefore the discussion of this section is
highly pertinent. In particular, our current implementation of adap-
tive locks uses a TM that does exhibit semantic differences from
mutex locks.

Consider the following example, adapted from [32].

Thread 1 Thread 2
Item *item; atomic (listlock) {
atomic (listlock) { if (!isEmpty(list)) {
item = Item *item =
removeFirst(list); getFirst(list);

} item->val1++;
int r1 = item->val1; item->val2++;
int r2 = item->val2; }
// Canr1 != r2 ? }

Assume that the program wants to maintain the invariant
item->val1 == item->val2 throughout the execution. If the
critical sections are executed in mutex mode, the above codeis cor-
rectly synchronized, with no race conditions, and the invariant is
kept. The two accesses to the item values in thread 1 are safe be-
cause the item has been removed from the shared data structure
(“privatized”) and therefore cannot be accessed by other threads—
there is no way to observe intermediate states with a changedval1
but notval2. This is not, however, necessarily the case when the
critical sections are executed in transaction mode. For instance,
consider our current implementation of adaptive locks, which uses
TL2 [6] as its underlying TM system. TL2 uses a “deferred update”
approach, where writes to memory are stored in a log. A transaction
commits by first locking all the memory words written by the trans-
action, then validating all memory words read (by checking their
“version numbers”) and finally copying the updated values from

the log to the written words in shared memory. In this example, the
two transactions do not write to the same words. Therefore, trans-
action 2 can commit “first” (i.e., validate its read of the first data
structure item before transaction 1 updates it) yet, while it writes
to shared memory the changes toitem->val1 anditem->val2,
transaction 1 can commit, removingitem from the data structure
while it is being updated.

One way to view the problem is that TL2 guarantees the se-
rializability of transactions only for direct read-write and write-
write conflicts, and not for indirect conflicts. In this example, the
transactional system has no way of knowing that the writes to
item->val1 anditem->val2 can conflict with the read actions
of Thread 1, since these are outside all transactions. In other cases,
such conflicts would be races even in the mutex mode of execution
of an adaptive lock. Nevertheless, privatization is a special case, as
it makes the data structure element invisible to any other thread.

This observation leads to a simple criterion for the equivalence
of mutex mode and transaction mode execution of adaptive locks:
For each shared memory location there should be a lock, such that
every access to the shared memory location occurs with the lock
held. Indeed, this is the standardlockset[31] well-formedness cri-
terion for multi-threaded programs. The lockset heuristichas been
used (in its pure form or with various refinements) as the basis
of some of the best known race detectors and multi-threaded cor-
rectness checkers [9, 19, 31, 35]. We can check that a programre-
spects the lockset correctness condition using any of thesestatic
or dynamic analyses. Note that this condition disallows ourpriva-
tization example. If the program does respect the lockset criterion,
then all possible (low-level) races are prevented by the TM system,
as shared data are always accessed while holding an adaptivelock
(i.e., inside a transaction, when in transaction mode). This guaran-
tees the safety of transactional execution if mutex mode execution
is safe.

5. Experimental Evaluation
To evaluate the effectiveness of adaptive locks, we performed ex-
periments with an array of microbenchmarks (for testing boundary
conditions) and macrobenchmarks. All measurements are medians
of 3 runs on a Sun UltraSparc T2 (Niagara2) T5220 machine (8
cores with 8 threads each for a total of 64 hardware threads, at
1.2GHz; 32 GB RAM). We used GCC 4.0.4, and our implementa-
tion of adaptive locks uses version 0.9.4 of TL2, which is also the
reference STM version we compare against in our plots.

5.1 Microbenchmarks

We stress-tested adaptive locks with microbenchmarks correspond-
ing to standard mapping data structures: red-black trees, hash ta-
bles, and splay trees.

Red-black trees are the poster child benchmark for transactional
memory systems. Mutex-based red-black tree solutions typically
do not scale, as they use coarse-grained locking due to the very high
complexity of coding a fine-grained red-black tree. TM approaches
perform well because the data structure has low actual contention
(different operations can access different parts of the tree without
conflicts) and can benefit from increased concurrency.

Splay trees, on the other hand, are pathologically bad for imple-
mentations that emphasize concurrency (such as TM) since every
update to a part of the tree needs to change the root, which becomes
a point of contention. Thus, the interesting question for splay trees
is how to incur less overhead, rather than how to gain more concur-
rency. We use a single-lock splay tree in our experiments.

We experimented with two fixed-size hash table implementa-
tions: one with coarse-grained locking (single lock per entire table)
and one with fine-grained locking (one lock per table bucket). Nat-
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Figure 2. Microbenchmarks: Data structures with different characteristics.Higher is better.Note that the fine-grained hash table plot includes
the coarse-grained mutex performance for reference.

urally, there is no difference in the performance of TM in thetwo
implementations, but mutex locks perform better in the latter.

For each data structure we used a relatively high-contention
workload with 50% lookup operations, 25% inserts and 25%
deletes. Each thread performs 100,000 operations total. Our results
are shown in Figure 2—note that these are throughput plots, so
higher numbers are better. As can be seen, none of the benchmarks
scales perfectly to 64 threads, largely because of the smallsize of
the data and the resulting contention, and possibly partly because
our hardware is not a full 64-way machine, but has 8 separate cores
with 8 hardware threads each.

Adaptive locks succeed in closely tracking the performance
of the better of the two component mechanisms for each bench-
mark. This means that adaptive locks soundly outperform either of
the component mechanisms on its own. Statistically, over all mi-
crobenchmarks and all thread configurations, adaptive locks are
on average 47% faster than mutexes (min: -16%, max: 433%)
and 176% faster than transactions (min: -26%, max: 837%). (This
should only be viewed as a summary of the figure data, as the aver-
age does not map to a real-world quantity.) For red-black trees and
coarse-grained hash tables, adaptive locks imitate a mutexlock for
low degrees of parallelism (1-2 threads) and a TM for more threads,
outperforming the mutex-based implementation. For splay trees,
adaptive locks precisely match the performance of a plain mu-
tex lock, outperforming the STM implementation. For fine-grained
hash tables, adaptive locks emulate mutexes, yielding better perfor-
mance than TM for few threads and identical performance for more

threads. The stress-testing reveals small overheads in ouradaptive
locks, compared to a plain STM approach (see the difference be-
tween TM and adaptive locks in the red-black tree plot). Thisis due
to the cost of the adaptivity logic, as discussed in Section 3.2.1. We
observed such overheads only in stress-testing scenarios but not in
more realistic settings, so we have not emphasized removingthe
last bit of overhead. Compared to mutex locks, our adaptive locks
have no measurable overhead, as seen in the splay tree benchmark.

The microbenchmarks also help illustrate the effectiveness of
our optimizations described in Section 3.2.1. With the unoptimized
version of adaptive lock acquisition (code in Figure 1) the perfor-
mance of adaptive locks drops drastically, as the counter ofspin-
ning threads becomes a bottleneck even when in transaction mode.
The result is shown in Figure 3 for the red-black tree and hashta-
ble benchmark. Comparing with Figure 2 makes evident the value
of the optimization. This also underscores the effectiveness of our
adaptive locks: The challenge that our implementation meets is to
provide a mechanism that is sophisticated enough to closelyemu-
late the behavior of mutexes or transactions, without imposing un-
due overhead over these high-performance mechanisms.

5.2 Macrobenchmarks

For larger benchmarks of adaptive locks, we used the STAMP
(Stanford Transactional Applications for Multi-Processing) bench-
mark suite [24], version 0.9.7. STAMP comprises 5 applications:
bayes (a bayesian network learning program),genome(a gene
sequencing program),kmeans(an implementation of K-means
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Figure 3. Microbenchmarks if our optimization of Section 3.2.1 had not been applied: Adaptive locks would be unscalable in transaction
mode. Compare to Figure 2. (Higher is better.)

clustering),labyrinth (a maze routing program) andvacation (a
client/server travel reservation system). All STAMP applications
are written to employ a TM system explicitly. That is, the code
contains explicit STM primitives (of the TL2 STM) for beginning
a transaction, transactionally reading/writing a word from/to shared
memory, committing a transaction, etc. As discussed in Section 3,
our adaptive lock compiler supports a higher-level programming
interface: all shared memory operations become implicitlytrans-
actional loads/stores when executing in transaction mode.There-
fore, the STAMP applications needed careful manual modifica-
tion to ensure that the output of our compiler reflects the origi-
nal hand-written code, and to introduce locking annotations in the
code. Our goal was to add only very coarse-grained locking, equiv-
alent to what a programmer would be able to add with minimal
effort and sophistication. Indeed, for four out of the five STAMP
benchmarks (bayes, genome, labyrinth, vacation) we only intro-
duced trivial locking: only a single global lock exists for the entire
application. For kmeans, 3 separate locks were introduced,with a
very localized code change (the critical sections for all 3 locks are
in a single file and in adjacent routines).

The performance of adaptive locks for the STAMP benchmarks
is illustrated in Figure 4. (The graphs plot execution times, so lower
is better.) For a statistical summary, over all STAMP benchmarks
and all thread configurations, adaptive locks are on average166%
faster than mutexes (min: -27%, max: 1021%) and 82% faster than
TM (min: -35%, max: 660%).

Adaptive locks track very closely, and even outperform the bet-
ter of the two component mechanisms over all applications. For
labyrinth, adaptive locks imitate TM behavior and vastly outper-
form mutex locks for all thread configurations. For kmeans, adap-
tive locks imitate mutexes and outperform the TL2 STM for all
thread configurations. The behavior of bayes is unstable by its na-
ture (the STAMP documentation reads “for multithreaded runs, the
running time can vary depending on the insertion order of edges”)
but adaptive locks consistently perform well for 4 or more threads.
More interesting behavior can be seen for genome and vacation,
where adaptive locks emulate mutexes for best performance with a
low number of threads, while executing in transactional mode and
perfectly matching the performance of plain TL2 for higher num-
bers of threads. Occasionally, adaptivity is profitable even in the
course of the same execution. For instance, for genome and a 2-4
thread configuration, the adaptive lock version of the program is
in mutex mode for the first part of the execution and in transaction
mode for the last part, outperforming both mutexes and transactions
alone.

Overall, the performance of adaptive locks for STAMP bench-
marks validates the approach very well. Our use of only coarse-
grained adaptive locking illustrates the intended usage mode of the
mechanism. Adaptive locks simplify the multi-threaded program-
ming model, by allowing the programmer to write coarse-grained
annotations and achieve easy multi-threaded correctness.The con-
venience comes without sacrificing concurrent performance: The
adaptivity mechanism can detect when coarse-grained locking is
too conservative and recover concurrency (as if using fine-grained
locks) by executing in transaction mode.

6. Related Work
We discussed directly related work throughout the previoussec-
tions. Here we outline some work that is less directly related, yet
offers context for our work, or explores closely related directions
in different settings.

Transactions originated in the databases research literature [11]
before they transitioned to general-purpose programming in the
form of transactional memory [17]. Although the principlesare
similar, the challenges in the two domains are quite distinct. For
instance, TM has to allow for arbitrary memory accesses and,
thus, cannot generally predict all locks that need to be acquired.
Furthermore, the granularity of access is finer in TM, creating very
different trade-offs for high-performance implementations.

In the database world, our adaptive locks might be described
as a mechanism adapting betweenoptimistic concurrency control
andpessimistic concurrency control. The term “optimistic” refers
to allowing transactions to proceed in the hope that they will not
conflict, while installing mechanisms to detect such conflicts. The
term “pessimistic” refers to acquiring locks up front, so that any
transactions that have the possibility of conflict end up serializing.
Database researchers have explored combinations of optimistic and
pessimistic concurrency control, and so have researchers in auto-
matic parallelization [7, 30]. The options are sometimes said to be
akin to “apologizing versus asking permission” [16]. The mutex
mode of our adaptive locks is an ultra-pessimistic mechanism, as it
forces all transactions to “ask permission” up front. Receiving per-
mission means that the transaction can proceed and is guaranteed
to not roll back: it has effectively “reserved” the right to perform its
memory operations.

In the TM literature, the terms “optimistic”/“pessimistic” typi-
cally have a more nuanced meaning, however. “Pessimistic” refers
to acquiring locks before accessing shared memory data, butthese
locks can be at the memory word granularity. Thus, only individual
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memory operations and not entire transactions “ask permission”.
Therefore, pessimistic TM can be best viewed as an implementa-
tion choice for TM and is otherwise not semantically different from
optimistic TM. Notably, transactions in pessimistic TM implemen-
tations (e.g., [8, 28]) can still roll-back and retry: this is necessary
to guarantee the absence of deadlock. Our adaptive locks arenot a
hybrid optimistic-pessimistic mechanism in this sense.

The PhTM [21] system is related to our work in that it describes
a mechanism for dynamically switching synchronization mechan-
ims. Nevertheless, our work advances the PhTM ideas in several
ways. First, PhTM introduces only a single global lock instead
of individual locks. Second, although the PhTM “SEQUENTIAL-
NOABORT” mode supports switching to lock-based execution, the
PhTM prototype does not support such switching. In fact, the
PhTM authors speculate, “we can likely improve performancein
most cases by monitoring progress of transactions, commit/abort
rates, status of transactions with respect to the current mode, etc.”
and conclude that “[f]uture work includes ... mechanisms for de-
ciding when to switch to what mode.” Our work directly addresses
these topics.

Our exploration of adaptive locks is in the context of a pure soft-
ware implementation. An important trend is to provide hardware
support for TM [10, 25, 26]. With hardware support, the perfor-
mance trade-offs change—e.g., the transactional overheadof loads
and stores may be virtually eliminated. Yet the idea of adaptive
locks should be quite applicable to hardware TMs: even with no
overhead for TM execution, it will be beneficial to adaptively detect
when transactions have high actual contention and mutual exclu-
sion would be profitable. Furthermore, most hardware support for
TM employs a hybrid software-hardware approach. For instance,
transactions that access shared data in excess of a pre-set amount,
will need to be implemented in software, making our approachper-
fectly applicable. Finally, many of the ideas of this paper can be
employed in hardware mechanisms such as speculative lock eli-
sion [29] or optimistic thread concurrency [10], which (essentially)
attempt to execute critical sections transactionally.

7. Conclusions
We presented the idea ofadaptive locksas a concurrency control
construct for multi-threaded programming. A major contribution
of our work is in identifying the statistics needed for an effective
cost-benefit adaptivity analysis and in developing mechanisms for
maintaining such statistics highly efficiently. Overall, we believe
that our work establishes adaptive locks as an excellent candidate
for inclusion in industrial-strength systems.
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