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Abstract

The wide performance gap between processors and disks ensures that
effective page replacement remains an important consideration in modern
systems. This article presents Early Eviction LRU (EELRU), an adaptive
replacement algorithm. EELRU uses aggregate recency information to
recognize the reference behavior of a workload and to adjust its speed of
adaptation. An on-line cost/benefit analysis guides replacement decisions.
This analysis is based on the LRU stack model (LRUSM) of program
behavior. Essentially, EELRU is an on-line approximation of an optimal
algorithm for the LRU stack model. We prove that EELRU offers strong
theoretical guarantees of performance relative to the LRU replacement
algorithm. EELRU can never be more than a factor of 3 worse than LRU,
while in a common best case it can be better than LRU by a large factor
(proportional to the number of pages in memory).

The goal of EELRU is to provide a simple replacement algorithm that
adapts to reference patterns at all scales. Thus, EELRU should perform
well for a wider range of programs and memory sizes than other algo-
rithms. Practical experiments validate this claim. For a large number of
programs and wide ranges of memory sizes, we show that EELRU outper-
forms LRU, typically reducing misses by 10% to 30%, and occasionally
by much more—sometimes by a factor of two to ten. It rarely performs
worse than LRU, and then only by a small amount.

Keywords: Replacement algorithms, LRU, memory management, virtual mem-
ory
1 Introduction and Overview

Modern operating systems come in a larger variety of configurations than ever
before: the same personal computer OS is used in practice with physical memo-



ries ranging from 64Mbytes to well over 1Gbyte. It is a challenge for OS design-
ers to improve virtual memory policies to obtain good performance, regardless
of system configuration. For several decades, LRU has been the dominant re-
placement policy, either used directly or approximated in a variety of contexts.
LRU has been shown empirically to often be very good—typically within a mod-
est constant factor of optimal in misses for a fixed memory size. Nevertheless,
LRU behavior can be bad, even for fairly common workloads. The simplest,
well-known LRU failure mode occurs for regular access patterns over more data
than can be held in main memory. For instance, consider any roughly cyclic
(loop-like) pattern of accesses over modestly more pages than will fit in mem-
ory. Such cyclic patterns could be induced either by a loop in the program
execution or by a runtime system, like a garbage collector that reuses memory.
When pages are touched cyclically, and do not all fit in main memory, LRU will
always evict the ones that have not been touched for the longest time, which
are exactly the ones that will be touched again soonest.

The question is whether there can be a disciplined approach to replacement
that prevents such problems, without resorting to ad hoc loop detection. One
way to look at the behavior of LRU for large loops is to say that LRU keeps
each page in memory for a long time, but cannot keep all of them for long
enough. In contrast, an optimal algorithm will evict some pages shortly after
they are touched in a given iteration of the loop. Evicting these pages early
allows other pages to remain in memory until they are looped-over again. Thus,
an optimal algorithm for large cyclic reference patterns is “unfair”’—there is
nothing particularly noteworthy about the pages chosen for “early” eviction
relative to LRU. The pages are simply sacrificed because fairness is a disaster
in such a situation.

These observations form the intuition behind Early Eviction LRU (EELRU).
EELRU adapts to reference patterns in order to ensure good performance re-
gardless of memory size. By default, EELRU performs LRU replacement but
diverges from LRU and evicts pages early when it notices that LRU behavior
is pathological. This includes the case of too many pages being touched in a
roughly cyclic pattern that is larger than main memory. The pattern detec-
tion is not ad hoc: program behavior is encoded as recency information (i.e.,
information indicating how many other pages were touched since a page was
last touched). This is the same kind of information maintained by LRU, but
EELRU maintains it for resident and (some) non-resident pages. Program be-
havior within a certain phase of execution exhibits consistent recency patterns
and EELRU can make informed replacement decisions. In particular, EELRU
can detect that LRU underperforms when many of the fetched pages are among
those evicted lately.

This behavior of EELRU provides an interesting guarantee on its perfor-
mance relative to LRU. The miss rate of EELRU can never be more than a
small constant factor (less than 3) higher than that of LRU. The reason is
that EELRU deviates from LRU only when the latter incurs many faults. EE-



LRU reverts back to LRU as soon as EELRU starts incurring more faults—in
other words, if EELRU is performing poorly, it will quickly return to LRU-
like behavior. LRU, in contrast, can perform worse than EELRU by a factor
proportional to the number of memory pages in the worst case. This factor is
usually in the thousands. This guaranteed property of EELRU is interesting
both because of the ubiquity of LRU (and its approximations, e.g., segmented
FIFO [TuLe81, BaFe83]) and because of the commonality of the LRU worst-case
pattern (a simple, large loop) in practice.

Additionally, EELRU is firmly based on a distinct principle of program local-
ity: timescale relativity (see also [WKM94]). Program behavior can be studied
at many timescales (for instance, real-time, number of instructions executed,
number of memory references performed, etc.). Timescale relativity advocates
that the timescale of a study should express only events that matter for the
studied quantity. For instance, a typical hardware cache should examine differ-
ent events than a virtual memory replacement policy. A loop over 600Kbytes of
data is very important for the former but may be completely ignored by the lat-
ter. Timescale relativity comes into play because real programs exhibit strong
phase behavior. EELRU tries to adapt to phase changes by assigning more
weight to “recent” events that matter for replacement purposes. Intuitively,
EELRU ignores all high-frequency references as these do not affect replacement
decisions and may “dilute” time so much that important regularities are impos-
sible to distinguish. In this article we argue that timescale relativity represents a
sound principle upon which locality studies should be based. We examine some
previous replacements algorithms in this light (Section 2). Also, we propose
that a special kind of plot, termed a recency-reference graph, is appropriate for
studying program locality behavior (Section 5). These plots capture regularities
in program behavior and motivate EELRU.

To validate EELRU experimentally, we applied it to nineteen program traces
and studied its performance. Eight of the traces are of memory-intensive appli-
cations and come from the experiments of Glass and Cao [GlCa97]. Glass and
Cao used these traces to evaluate SEQ, an adaptive replacement algorithm that
attempts to detect linear (not in recency but in address terms) faulting patterns.
This set of traces contains representatives from all three trace categories identi-
fied in [G1Ca97]: traces with large memory requirements but no clear memory
access patterns, with small access patterns, and with large access patterns. We
used another five traces from the Etch collection [LCBAB98]. These are also
large applications, more representative of an engineering or program develop-
ment workload. Finally, six more traces were collected as representatives of
applications that are not memory-intensive but may have small-scale reference
patterns.

The results of our evaluation are quite encouraging. EELRU performed at
least as well as LRU in almost all situations and significantly better in most.
Results of better than a 30% reduction in faults compared to LRU were common
for a wide range of memory sizes and for applications with large-scale reference



patterns. A comparison with the SEQ algorithm [G1Ca97] was also instructive:
SEQ is based on detecting patterns in the address space, while EELRU detects
patterns in the recency distribution. Although our simulation was quite conser-
vative (see Section 5), EELRU managed to obtain significant benefit even for
traces for which SEQ did not. On the other hand, SEQ is by nature an aggres-
sive algorithm and performed better for programs with very clear linear access
patterns in the address space. Even in these cases, however, EELRU captured
a large part of the available benefit.

A previous, shorter, study [SKW99] first described EELRU and the princi-
ples behind it. In the current article, the ideas have been elaborated to result in
a more efficient algorithm—compared to the measurements of our earlier study,
the new EELRU described here performs uniformly better and offers much more
predictable behavior. Additionally, this article includes performance measure-
ments for several more programs, as well as strong theoretical results on the
performance of EELRU. Indeed, the new theoretical results provided the moti-
vation for elaborating the algorithm to allow it greater flexibility in the choice
of eviction points, which is the reason for the improved performance. Thus, we
consider this study to supersede our earlier EELRU work [SKW99].

Overall, EELRU is a simple, soundly motivated, effective replacement algo-
rithm. As a representative of an approach to studying program behavior based
on recency and timescale relativity, it proves quite promising for the future.

2 Related Work

The main purpose of this section is to compare and contrast the approach taken
by EELRU with other replacement policies. This will help illustrate the ra-
tionale behind some of the design choices in EELRU. Management of memory
hierarchies has been a topic of study for several decades. Because of the volume
of work on the subject, we will limit our attention to some selected references.

Loop detection for replacement purposes has been proposed several times
in order to address the shortcomings of LRU for large scale looping patterns.
The well-known Atlas loop detector [BFH68] is commonly cited as the prede-
cessor of more recent loop detection work (e.g., [MuNe80, G1Ca97]). EELRU
does not resort to loop detection: it is just recasting the program references
in a different domain (recency), under the assumption that program regulari-
ties express themselves in that domain. As we will see in our recency-reference
graphs, this assumption is justified. Additionally, the disciplined approach of
EELRU is demonstrated in its theoretical guarantees compared to LRU. Unlike
EELRU, traditional loop detectors can be “fooled” to perform arbitrarily worse
than LRU.

EELRU uses recency information to distinguish between pages. A recency-
based standpoint (see also [Spi76, FeLW78, WoFL83]) dictates that the only
way to differentiate between pages is by examining their past history of ref-



erences, without regard to other information about the pages (e.g., proximity
in the address space). This ensures that looping patterns of several different
kinds are treated as the same. Note that access patterns that cause LRU to
page excessively do not necessarily correspond to linear patterns in the mem-
ory address space. For instance, a loop may be accessing records connected in
a linked list or a binary tree. In this case, accesses are regular and repeated,
but the addresses of pages touched may not follow a linear pattern. That is,
interesting regularities do not necessarily appear in memory arrangements but
in how recently pages were touched in the past. The SEQ replacement algo-
rithm [G1Ca97] is one that bases its decisions on address information (detecting
sequential address reference patterns). Consequently, it is lacking in general-
ity (e.g., cannot detect loops over linked lists connecting interspersed pages).
Section 5 compares EELRU and SEQ extensively.

An intermediate approach between EELRU and algorithms like SEQ con-
sists of making use of page identity, but not the exact page address (i.e., the
algorithm behavior remains the same if all pages are mapped one-to-one to
different addresses). There are algorithms that are recency-based, yet keep per-
page information—most recently the LIRS algorithm [JiZh02] was proposed and
shown to work well for file-system-intensive traces. Combining recency informa-
tion with other data kept per-page is an interesting direction for future work. In
the past, we have experimented with algorithms that keep track of each page’s
past recency behavior and found them to be too brittle for the virtual memory
traces examined in this article. In particular, the replacement algorithms we
examined were variants of our CIRG replacement algorithm [SmWi00], adapted
to the recency domain. The results were considerably better than LRU in many
cases, but other programs “tricked” the algorithm into significantly worse be-
havior than LRU.

EELRU is based on the principle of timescale relativity, which helps it detect
and adapt to phase changes. The first application of timescale relativity in EE-
LRU is in determining that time advances at a slower rate for larger memories,
or, equivalently, that the length of what constitutes a “phase” in program be-
havior is proportional to the memory size examined. This idea is by no means
new. In fact, it is commonplace in many pieces of theoretical work on pag-
ing (e.g., [SITa85, Tor98]), where an execution is decomposed into phases with
working sets of size equal to that of memory.

The second application of timescale relativity in EELRU dictates that only
events that matter for replacement decisions should count to advance time. In
the past, several replacement algorithms based on good ideas have yielded rather
underwhelming results because they were affected by events at the wrong time-
scale. For instance, EELRU uses reference recency information to predict future
reference patterns. This is similar to the approach taken by Phalke [Pha95] with
the inter-reference gap (IRG) model. Phalke’s approach attempts to predict how
soon pages will be referenced in the future by looking at the time between succes-
sive past references. The Atlas loop detector [BFHG68] can be viewed as a simpler



version of the same idea that examines only the last successive references. The
loop detector fails because time is measured as the number of memory references
performed. A timescale relative treatment would (for instance) define time in
terms of the number of pages touched that have not been touched recently. Note
the importance of this difference: time-based approaches, like IRG and the At-
las loop detector, do not filter out high-frequency information. If a loop repeats
with significant variation per iteration, the time between successive references
will vary significantly. This is not unusual: loops may perform different num-
bers of operations per step during different iterations—as is, for instance, the
case with many nested loop patterns. The Atlas loop detector would then fail
to recognize the regularity. More complex, higher order IRG models (such as
those studied by Phalke) can detect significantly more regularities in the pres-
ence of variation. This complexity, however, makes them prohibitive for actual
implementations. At the same time, the reference pattern in timescale relative
terms may be extremely regular.

A view based on recency and timescale relativity can be applied to other
work in the literature. Most work on replacement policies deals with specific
formal models of program behavior. Indeed EELRU itself is inspired by the
LRU stack model (LRUSM) [Spi76], as we will discuss in Section 3.2. LRUSM
is an independent events model, where events are references to pages identified
by their recency (i.e., the number of other pages touched after the last touch
to a page). An optimal replacement algorithm for LRUSM is that of Wood,
Fernandez, and Lang [WoFL83]. Unfortunately, programs cannot be modeled
accurately as independent recency events. On the other hand, short program
phases can be modeled very closely using LRUSM. Hence, a good on-line recency
algorithm needs to be adaptive to detect phase changes. Timescale relativity
(as in EELRU) is crucial for providing such adaptivity reliably.

Other well-known models are those in the class of Markov models (e.g.,
[CoVaT76, FrGu74]). The straightforward case of a 0-th order Markov model
corresponds to the well known independent reference model (IRM) [ADUT1].
An optimal replacement algorithm for Markov models can be found in [KPR92].
Certainly Markov models can be used to codify several different aspects of the
behavior of a system. Nevertheless, the standard use is to assume that memory
accesses can be modelled using a Markov process. This approach tries to solve a
far harder problem than that at hand. Instead of asking “which page will be ref-
erenced the farthest (or just far enough) into the future?”, it asks “which pages
will be referenced soon and in what order?”. Deriving an answer to the former
question from the answer to the latter requires accuracy that a model is very
unlikely to exhibit. For instance, most of the pages referenced by real programs
are re-referenced very soon and often, but the number and order of re-references
is not relevant for replacement decisions. Trying to predict the re-reference pat-
terns with accuracy is not only impossible but also irrelevant. From a timescale
relativity standpoint, the common uses of Markov models attempt to predict
program behavior at the wrong, much more detailed, timescale. This makes



Markov model-based replacement too brittle for actual use—realistic models
cannot offer any accuracy at a large enough timescale (such as that of memory
replacement decisions).

Finally, EELRU can be viewed as a way to partially negate an often-stated
assertion about the limits of actual eviction algorithms. Quoting from [Tor98]:

Stated another way, the guaranteed performance of any deterministic
on-line algorithm degrades sharply as the intrinsic working set size of
an access sequence increases beyond [the memory size] whereas the
performance of the optimal off-line algorithm degrades gracefully as
the intrinsic working set size of an access sequence increases beyond
[the memory size].

This assertion holds under worst-case analysis. Nevertheless, in practice, pro-
gram reference sequences have enough exploitable regularity that an on-line
algorithm can imitate the behavior of the optimal off-line algorithm. EELRU
is an example of this approach and adds to LRU the ability to degrade grace-
fully its performance for large working sets when reference patterns are roughly
cyclic.

3 The EELRU Algorithm

3.1 The General Idea
The structure of the early-eviction LRU (EELRU) algorithm is quite simple:

1. Perform LRU replacement unless many pages fetched recently had just
been evicted.

2. If many pages fetched recently had just been evicted, apply a fallback
algorithm: either evict the least recently used page or evict the e-th most
recently used page, where e is a pre-determined recency position.

To turn this idea into a concrete algorithm, we need to define the notions of
“many”, “recently”, etc., (highlighted above), as well as an exact fallback algo-
rithm. By changing these aspects we obtain a family of EELRU algorithms, each
with different characteristics. In this article we will only discuss a single fallback
algorithm (one that is particularly simple and has a sound theoretical motiva-
tion). The algorithm is described in Section 3.2. In this section we describe the
main flavor of the EELRU approach, which remains the same regardless of the
actual fallback algorithm used.

Figure 1 presents the main elements of EELRU schematically, by showing
the reference recency axis (also called the LRU azis) and the potential eviction
points. The reference recency axis is a discrete axis where point i represents the
i-th most recently accessed page (written r(7)). (A better name might be the
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Figure 1: General EELRU scheme: LRU axis and correspondence to memory
locations.

“lack of recency axis” since higher positions are occupied by less recently used
pages.) As can be seen in Figure 1, EELRU distinguishes three regions on the
recency axis. The “LRU memory region” consists of the first e blocks, which are
always in main memory. (Note that the name may be slightly misleading: the
“LRU region” holds the most recently used blocks. The name comes from the
fact that this part of the buffer is handled as a regular LRU queue.) Position e
on the LRU axis is called the early eviction point. The region beginning after the
early eviction point and until the memory size, M, is called the “early region”.
The “late region” begins after point M and its extent is determined by the
fallback algorithm used (e.g., see Section 3.2).

Recall that at page fault time EELRU will either evict the least recently
used page or the page at point e on the recency axis (i.e., the e-th most recently
used page). The latter is called an early eviction and its purpose is to keep
not-recently-touched pages in memory for a little longer, with the hope that
they will soon be referenced again. The challenge is for EELRU to adapt to
changes in program behavior and decide reliably which of the two approaches
is best in every occasion.

EELRU maintains a queue of recently touched pages ordered by recency, in
much the same way as plain LRU. The only difference is that the EELRU queue
also contains records for pages that are not in main memory but were recently
evicted. EELRU also keeps the total number of page references per recency
region (i.e., two counters). That is, the algorithm counts the number of recent
references in the “early” and “late” regions (see Figure 2a). This information
enables a cost-benefit analysis, based on the expected number of faults that a
fallback algorithm would incur or avoid. In essence, the algorithm makes the
assumption that the program recency behavior will remain the same for the
near future and compares the page faults that it would incur if it performed
LRU replacement with those that it would incur if it evicted pages early.

Section 3.2 demonstrates in detail how this analysis is performed, but we will
sketch the general idea here by means of an example. Consider Figure 2a: this
shows the recency distribution for a phase of program behavior. That is, it shows
for each position on the recency axis how many hits to pages on the position have
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Figure 2: Example recency distribution of page touches: with LRU (top part)
many references are to pages not in memory. After evicting early (bottom part)
some less recent pages stay in memory. Since references to less recent pages are
common (in this example distribution), evicting early yields benefits.

occurred lately. The distribution changes in time, but remains fairly constant
during separate phases of program behavior. The EELRU adaptivity mechanism
is meant to detect exactly these phase changes.

If the distribution is monotonically decreasing, LRU is the best choice for
replacement. Nevertheless, large loops could cause a distribution like that in
Figure 2a, with many more hits in the late region than in the early region. This
encourages EELRU to sacrifice some pages in order to allow others to stay in
memory longer. Thus, EELRU starts evicting pages early so that eventually
more hits in the late region will be on pages that have stayed in memory (Fig-
ure 2b). A crucial point to remember when working with pages ordered by
recency is that a reference to a page changes its recency to 1 (i.e., the page
moves to the beginning of the recency axis in Figure 2b) and increments by
1 the recencies of all less recently accessed pages (i.e., these pages move one



position to the right on the recency axis). This is why Figure 2b shows gaps in
the “pages in memory”. When all evictions are from the early eviction point,
e, the recencies of pages in memory depend on the program’s reference pattern
(i.e., they are unpredictable). As we will see in the next section, we estimate
probabilistically what the effect of early evictions will be on the hit ratio of a
workload.

EELRU is not the first algorithm to attempt to exploit such recency infor-
mation for eviction decisions (e.g., see [FeLW78]). Its key point, however, is
that it does so adaptively and succeeds in detecting changes in program phase
behavior. In the description of the general idea behind EELRU we used the
word “recently”. The implication is that the cost-benefit analysis performed by
EELRU assigns more weight to “recent” faulting information (older statistics
are gradually decayed). The crucial element is the timescale of relevant mem-
ory references. The EELRU notion of “recent” refers neither to real time nor
to virtual time (measured in memory references performed). Instead, time in
EELRU is defined as the number of relevant events for the given memory size.
The events considered relevant can only be the ones affecting the page faulting
behavior of an application (i.e., around size M). These events are the page
references (both hits and misses) in either the early or the late region. High-
frequency events (i.e., hits to the e most recently referenced pages) are totally
ignored in the EELRU analysis. The reason is that allowing high-frequency
references to affect our notion of time dilutes our information to the extent that
no reliable analysis can be performed. The same number of memory references
may contain very different numbers of relevant events during different phases of
program execution.

The basic EELRU idea can be generalized in a straightforward fashion by
allowing more than one instance of the scheme of Figure 1 in the same replace-
ment policy. This can be viewed as having several EELRU eviction policies
on-line and choosing the best for each phase of program behavior. For instance,
multiple early eviction points may exist and only the events relevant to a point
would affect its cost-benefit analysis. The point that yields the highest expected
benefit will determine the page to be replaced. Section 3.2 discusses this in more
detail.

Finally, we should point out that the simplicity of the general EELRU scheme
allows for quite efficient implementations. Even though we have not provided
an in-kernel version of EELRU, we speculate that it is quite feasible. In par-
ticular, EELRU can be approximated using techniques identical to standard
in-kernel LRU approximations (e.g., segmented FIFO [TuLe81, BaFe83]). Just
as in LRU approximations, references to the most recently used pages matter
little for EELRU statistics and can be ignored. Compared to LRU, the only
extra requirement of EELRU is maintaining recency information even for pages
that have been evicted. Since this information only changes at page fault time,
the cost of updating it is negligible.
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Figure 3: EELRU with WFL fallback: LRU axis and correspondence to memory
locations.

3.2 A Concrete Algorithm

The first step in producing a concrete instance of EELRU is choosing a reason-
able fallback algorithm. This will in turn guide our cost-benefit analysis, as well
as the exact distribution information that needs to be maintained. An obvious
candidate algorithm would be one that always evicts the e-th most recently used
page. This is equivalent to applying Most Recently Used (MRU) replacement
to the early region and clearly captures the intention of maintaining less recent
pages in memory. Nevertheless real programs exhibit strong phase behavior
(e.g., see the findings of [Den80]) which causes MRU to become unstable (pages
which may never be touched again will be kept indefinitely).

The algorithm of Wood, Fernandez, and Lang [FeLW78, WoFL83] (hence-
forth called WFL ! ) is a simple modification of MRU that eliminates this
problem. The WFL replacement algorithm specifies two parameters represent-
ing an early and a late eviction point on the LRU axis. Evictions are performed
from the early point, unless doing so means that a page beyond the late eviction
point will be in memory. Thus, the algorithm can be written simply as:

if r(l) is in memory
and the fault is on a less recently accessed page
then evict page (1)
else evict page r(e)
(where e is the early and [ the late eviction point). Figure 3 shows some elements
of the WFL algorithm schematically.

It has been shown (see [WoFL83]) that for each distribution there exist val-
ues for e and [ such that the WFL algorithm is optimal for the LRU stack
model of program behavior [Spi76] (that is, an independent-events model where
the events are references to positions on the LRU axis). Again, however, pro-
gram phase behavior (even for well-defined, long lasting phases) can cause the
algorithm to underperform. This is not surprising: WFL is not an adaptive
algorithm. Instead it presumes that the optimal early and late points are cho-

The WFL algorithm is called GLRU (for “generalized LRU”) in [FeLW78]. To avoid
confusion, we will not use this acronym, since it has been subsequently overloaded (e.g., to
mean “global” LRU).

11
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Figure 4: Probability of being in memory for a page with a given recency.

sen based on a known-in-advance recency distribution. Thus, the adaptivity
provided by EELRU is crucial: it is a way to turn WFL into a good on-line
replacement algorithm. This is particularly true when multiple pairs of early
and late eviction points exist and EELRU chooses the one yielding the most
benefit (see subsequent discussion).

Even though entire programs cannot be modeled accurately using the LRU
stack model, shorter phases of program behavior can be very closely approx-
imated. Under the assumptions of the model, the WFL algorithm has the
additional advantage of simplifying the cost-benefit analysis significantly. One
of the properties of WFL is that when the algorithm reaches a steady state, the
probability P(n) that the n-th most recently accessed page (i.e., page r(n)) is
in memory is:

1 ifn<e
Pn)y=<¢ (M—-e)/(l—e) ife<n<=l
0 otherwise

The probability distribution is shown in Figure 4. Now the cost-benefit analysis
for EELRU with WFL fallback is greatly simplified: we can estimate the number
of faults that WFL would incur (at steady state) and compare that number to
LRU. We will call total the number of recent hits on pages between e and ! (in
reference recency order). Similarly, we will call early the number of recent hits
on pages between e and M. In all EELRU bookkeeping functions, references to
recency positions below e are ignored (these references have to be hits as the e
most recently referenced pages are always kept in memory). Given the above
values of P, if LRU eviction were performed, the hit ratio (minus the hits to the
e most recently used pages) would be early. If the fallback WFL algorithm were
used, the hit ratio (again, minus the hits to the e MRU pages) would be total
(M —e)/(l —e). The EELRU cost-benefit analysis consists of comparing those
two quantities for the recent past and choosing the algorithm that would have

12



performed the best. The total eviction algorithm (EELRU with WFL fallback)
then becomes:

if total -(M —e)/(l —e) < early

or (r(l) is in memory

and the fault is on a less recently accessed page)

then evict the least recently accessed page

else evict page r(e)

We can now consider the obvious generalization of the algorithm where sev-
eral instances of WFL, each with different values of e and [, are active in parallel.
By e;, l;, total;, and early; we will denote the e, [, total and early values for the
i-th instance of the algorithm. Then, the instance of WFL that will actually
decide what page is to be evicted is the one that maximizes the expected benefit
value total; - (M —e)/(l —e)— early;. If all such values are negative, plain LRU
eviction is performed. Note that in the case of multiple early and late eviction
points, EELRU adaptivity performs a dual role. On one hand, it produces on-
line estimates of the values of e and [ for which the algorithm performs optimally
(also, plain LRU is no more than another case for these values). On the other
hand, the adaptivity allows detecting phase transitions and changing the values
accordingly.

In the case of multiple early and late eviction points, one more modification
to the basic WFL algorithm makes sense. Since not all late eviction points are
equal, it is possible that when the i-th instance of WFL is called to evict a page,
there is a page r(n) in memory, with n > ;. In that case, the algorithm should
first evict all such pages (to guarantee that, in its steady state, all pages less
recently referenced than /; will not be in memory). Note that this modification
of the basic WFL algorithm does not affect its steady state behavior (and,
consequently, its proof of optimality for the LRU stack model, as presented
in [WoFL83]). Taking the change into account, our final eviction algorithm

becomes:
let benefit be the maximum of the values

total; - (M — e;)/(l; — e;) — early;
and j be the index for which this value occurs

if  benefit <0
or a page r(n), n > l; is in memory
or (r(l;) is in memory
and the fault is on a less recently accessed page)
then evict the least recently accessed page
else evict page r(e;)
This form of EELRU is the one used in all experiments described in this article.

13



4 Theoretical Results

Two main theoretical results are pertinent to EELRU. The first is the proof of
robustness for the algorithm with respect to LRU: we show that EELRU can
never incur more than 3 times as many faults as LRU, while LRU can incur
(M) as many faults as EELRU in the worst case. The second result shows
that, with the right choice of parameters, the replacement algorithm of Wood,
Fernandez, and Lang (WFL) is a stack algorithm.

This section is somewhat involved and later sections do not depend on it.
Performance-oriented readers may wish to skip ahead to Section 5.

4.1 EELRU vs. LRU

An interesting property of EELRU is that it is robust with respect to LRU under
worst-case analysis. In particular, EELRU will never perform more than a small
constant factor worse than LRU, while LRU can perform worse than EELRU
by a factor proportional to the number of memory pages. The exact values
of these factors depend somewhat on the parameters picked for the EELRU
algorithm—e.g., the number and positions of early and late eviction points, and
the speed of adaptation. Nevertheless, for any eviction point and a reasonable
adaptation approach, it is easy to bound the worst case faults of EELRU to be
3 times the faults of LRU. Conversely, LRU can always incur Q(M — e) times
as many faults as EELRU.

The proof is based on the observation that EELRU diverges from LRU only
when the latter has incurred many faults lately and reverts back to LRU when it
detects that LRU would have performed better. Thus, the only cases when LRU
is better than EELRU are such that LRU incurs many faults (enough to tempt
EELRU to diverge). In such cases the ratio of miss rates of the two algorithms
is never worse than a constant. Conversely, a steady loop slightly larger than
memory but within one of the late regions of EELRU will cause LRU to suffer
misses for every page, while EELRU will suffer a constant number of misses per
iteration.

For simplicity, we consider a version of EELRU that maintains only one early
eviction point, at recency e. A generalization of the proofs is straightforward
(but tedious, especially for Theorem 2). The adaptivity mechanism maintains
the M most recent references beyond recency position e. If at least M /2 of
these are in the early region, the algorithm does LRU evictions. Otherwise, it
evicts early (i.e., the e-th most recently used page).

Theorem 1 LRU can incur Q(M — e) times as many faults as EELRU.

Proof: Consider a linear loop over M + 1 pages. The LRU algorithm will incur
a fault for each reference in the loop. After the first M /2+ 1 references, EELRU
will perform early evictions. From that point on, EELRU will incur one fault
for each M — e+ 1 references. For Q(M) loop iterations (so that the initial cost
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of adapting is asymptotically negligible), the ratio of LRU to EELRU faults will
be (M —e). O

The next theorem gives a bound of 3 for the worst-case performance of EE-
LRU relative to LRU. The bound can be tightened more (up to about 2.5—e/M,
we conjecture) but the conservative proof for the 3-fold bound is appealingly
simple.

Theorem 2 EELRU will never incur more than 3 times as many faults as
LRU.

Proof: We will define a “potential” function on the state of EELRU, that will
describe the EELRU potential for deviation from LRU. We show that this po-
tential can rise only if a reference would be an LRU fault, and if EELRU incurs a
fault that is not an LRU fault, the potential will drop significantly. In this way,
we can guarantee that EELRU can incur more faults than LRU only if LRU in-
curs enough faults (one third the number) in the first place. The challenge is in
defining appropriately such a potential function, to capture the EELRU adap-
tivity. The difficulty is that the “deviation” of EELRU from LRU is complex:
it consists of the difference in the pages that each algorithm keeps in memory
at each point in time, as well as the EELRU “recent behavior” statistics that
encourage deviation from LRU.

Consider a function f capturing the information of whether a reference was
in the early region (and, thus, would have been an LRU hit) or not. As in all
EELRU bookkeeping tasks, references to recency positions up to e are ignored:

1 if i-th most recent reference beyond recency position e
f@) = was to a recency position > M
0 otherwise

f captures the “memory” of EELRU: it describes the latest references in the
workload. Although f can be defined for arbitrarily high numbers, we will only
use its values up to M (i.e., we assume a version of EELRU that adapts based
on the latest M references beyond the e most recently used pages). A new
reference to a page beyond recency e will make all values of f “shift” by one

position: the old value of f(i) will become the new value of f(i + 1).
M

We can now define the following quantities p and s: p :Z(M +1—149)f(),

i=1
M
s :Zf(z) It is clear that 0 < p < w and 0 < s < M. That is,
i=1

s shows how many recent references encourage deviation from LRU and p is
a measure of the potential for deviation, such that more recent references are
favored. In intuitive terms, p captures the “decaying” of EELRU statistics that
is fundamental for its adaptivity.
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Additionally, we will define d as the number of pages that are not resident in
memory but are more recently accessed than the least recent page in memory.
This corresponds to the total length of the “gaps” in the sequence of resident
pages, as shown in Figure 2. Intuitively, d captures the differences between the
pages kept in memory by LRU and EELRU.

Now we will consider the effect of a reference with recency j (i-e., to the j-th
most recently accessed page), with j > e, on the values of the quantities p and
d during an execution of EELRU. The new values are designated p’ and d'.

o if s > % (EELRU is in “early eviction mode”):

—ifj< Mthenp =p—s,d <d
—ifj>Mthenp =p+M—s,d <d+1

o if s <& (EELRU is in “LRU eviction mode”):

—if j < M then p' = p — s, if EELRU incurs a fault then d' < d,
otherwise d' = d.

—ifj>Mthenp =p+ M —5s,d <d

The derivation of the above four cases is straightforward once it is clear
how f gets updated. Recall that f encodes whether the last M references
with recency j > e would have been LRU hits or misses. When a reference
with recency j > e occurs, all the values of f are “shifted” one position (the
information now concerns slightly “older” references).

Consider, the first of the above cases. If j < M then f(1) = 0 and f(2)
up to f(M) will have the old values of f(1) up to f(M — 1). Since p assigns
linearly less value to older statistics, the new value of p, p’, will be equal to the
old p, reduced by s: all the old values of f that were 1 are now a little older
and contribute each a one unit reduction in p. The value of d does not increase:
even if an early eviction occurs, it will be in response to a miss on a page that
would have before contributed to d (because we assumed j < M) so the effect
evens out.

The other three cases are derived similarly.

For simplicity, we can combine p and d into a single “potential” function, t,
with t =p+ d%. By definition of ¢, it is originally 0 and generally ¢t > 0. From
the above case analysis, one can see that for every fault incurred by EELRU
that is not an LRU fault (i.e., j < M), t is reduced by at least % (either p
is reduced by more than % while d does not increase, or d is reduced, while p
does not increase). The only way to increase ¢ is if j > M, that is LRU incurs
a fault (which may also be a fault for EELRU). The increment is at most M.

To summarize, the potential can rise by at most M if LRU incurs a fault,
drops by at least % if EELRU incurs a fault that is not an LRU fault, and has
to stay non-negative. That is, every two faults of EELRU that are not faults
for LRU can be incurred only if both EELRU and LRU incur one more fault.
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Thus, EELRU can incur at most 3 faults for each LRU fault. O

4.2 An Optimal Stack Algorithm for the LRUSM

The LRU Stack Model (LRUSM) is the simplest probabilistic model in the re-
cency space. It is an independent events model, where the events are references
to recency positions. That is, the model prescribes independent trials, all gov-
erned by the same fixed probability distribution. An outcome of z in any trial,
means that the z-th most recently accessed page is referenced. Wood, Fernan-
dez, and Lang [WoFL83] showed an optimal replacement algorithm for the LRU
stack model (i.e., for workloads that are random processes following the LRU
stack model). In this section we first discuss a slight elaboration of their algo-
rithm and show that it is a stack algorithm. Stack algorithms [MGST70] are a
well-known class of replacement algorithms. Their identifying property is the
inclusion property: at any point in the execution of a workload, if a page is in
a memory of size M, then it will also be in memory for any size M’ > M. It
follows that the miss curve (the curve formed by plotting the number of misses
over a range of memory sizes) for a stack-algorithm-managed memory is non-
increasing. This is a desirable property for a replacement algorithm: adding
more memory should improve system behavior.

In fact, the “stack algorithm” property seems so fundamental that one may
be tempted to speculate that all optimal algorithms for a reference model are
stack algorithms. This is not so. Optimality of an on-line algorithm is defined
only in respect to a reference model—nothing is guaranteed about the algo-
rithm’s behavior on arbitrary (i.e., non-conforming to the model) input. Being
a stack algorithm is an intrinsic property of the algorithm, regardless of the
input.

Wood, Fernandez, and Lang demonstrated that the optimal eviction algo-
rithm for the LRUSM is of a form that has two parameters, which we call e and
[ (for “early eviction point” and “late eviction point”, respectively). The e most
recently accessed pages will always be in memory. Pages with recency between
e and [ are in memory with probability A{[_’ee (i.e., proportional to the amount of
memory available to hold them). Pages that are not among the [ most recently
accessed are guaranteed not to be in memory. Consequently, the expected hit
ratio, H(M), for memory size M and the optimal replacement algorithm will
be H(M) = P(0,¢e) + Af:: (e,1), where P(x,y),x < y is the probability that
the page accessed is among the y most recently accessed but not among the x
most recently accessed. The optimal algorithm is the one that makes the choice
of e and [ so that the hit ratio is maximized. There may be multiple values of e
and [ that yield the same hit ratio. The following algorithm fixes these values:

Algorithm 1 :
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e Among all values of e and | that mazimize H (M), pick the highest value
of e.

e For that e, pick the lowest value of | that mazimizes H(M).

We will show that the eviction algorithm resulting from this choice of pa-
rameters is a stack algorithm. The main property of the value pairs chosen
by Algorithm 1 is that the intervals e,...,l (called the eviction ranges) can-
not overlap (except for their endpoints) for different memory sizes. Thus, if for
memory size M; the algorithm picks points e; and Iy, for memory size My > My
the algorithm has to either pick the same points, or pick an early eviction point
ey such that es > I;. In both cases, all pages that will be in a memory of size
My, will also be in a memory of size M, at all points during the execution of a
workload, thus making the algorithm be a stack algorithm.

Let us now show that the intervals e, .. .,[ cannot overlap for different mem-
ory sizes. Consider the e and [ picked by Algorithm 1 for a memory size M,
and let us assume that e < M < [ (i.e., the optimal replacement for memory
size M is not LRU). Then for a recency point z, z < e, we have:

5 P0,2) + (Pl ) + Ple, 1) T2

P(0,z) + P(z,e) + P(e,l) -
(The left hand side is the hit ratio when e is the early eviction point, in which
case references to positions = through e are hits. The right hand side is the hit
ratio when z is the early eviction point. Since e yields an optimal hit ratio, the
left hand side is greater than or equal to the right hand side.) From this, with
some algebraic manipulation, we eventually get:

Pla,e) _ Ple.])
e—x — l—e

(1)

Inequality 1 essentially states that the average probability density in a range
right before the early eviction point cannot be lower than that in the eviction
range (i.e., the e,...,[ interval).

Similarly, for a recency point x, e < x < M:

]\14__; < (P(e,a) + P(a,1)) L =¢

P(e,z) + P(z,1) s

(The inequality is strict because e is the latest optimal early eviction point so
no later point can yield the same hit ratio.) Again, from this we get:

P(e,x)  P(e,l)
<
T—e l—e

Exactly the same is true of recency points x, M < x < [. There we have:

M=¢  (ple,a) + P, 1)) L=¢

P
(e’x)a:—e l—e
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(The inequality is strict because [ is the earliest optimal late eviction point
corresponding to e.) From this we get the same expression as above:

P(e,x) < P(e,l)

T —e l—e

(2)

In other words, inequality 2 holds for all z, e < x < [ and states that the
average probability density in a range starting at e and ending before [ must be
lower than the total average in the eviction range.

Finally, we consider the case of a recency point z, [ < z. We get:

M—e M—e
S (P(e,a:) - P(lam))

T —e l—e

P(e,x)

From which we have:

P(e,x) < P(e,l) 3)
Tr—e l—e

That is, the average probability density in a range starting at e and extending
beyond [ is at most equal to the average density in the eviction range.

Note that none of the above inequalities depend on the memory size, M.
Using these inequalities it is easy to show that the eviction ranges ey, ...,l; and
€s,...,ls defined by Algorithm 1 for memory sizes M; and M, respectively,
cannot overlap, except at their endpoints. Consider the case e; < e < I1 < I5.

(The only other case is e; < ey < ls < [y, which is treated analogously.) If
P(‘t7y) (

we use the notation d(z,y) to represent the fraction
y—x

density in that range) we get:

i.e., the probability

d(er,es) < d(er,ly)
(From applying inequality 2 with e = e1,l = 11,2 = e3.)
d(ey,e2) > d(ea,ls)
(From applying inequality 1 with e = e3,l = lo,2z = e;.) The two above

inequalities imply that:
d(62, l2) < d(el, ll) (4)

But similarly we get from the first inequality:
d(e, ez) < d(ex,l1) = d(ez,l1) > d(e1,l1)
(From the definition of d(z,y) and simple properties of fractions.) Also we have:
d(es,l1) < d(ea,ls)

(From applying inequality 2 with e = es,l = I,z =[3.) From the above we get
d(e2,l3) > d(e1,l1), which contradicts inequality 4.
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This concludes the proof that eviction ranges chosen with Algorithm 1 do
not have common internal points. This property directly implies that the WFL
replacement algorithm with points e and [ chosen through Algorithm 1 is a
stack algorithm. To see this, consider that the algorithm can only possibly
evict from recency point e or [ and that the choice of point does not depend
on memory size M. Consider two memory sizes M; and M» with Ms > M.
If the corresponding optimal eviction points, e1,es,l1,l> are equal (i.e., e; = ey
and [; = l2), then all eviction decisions for both memories will be identical (but
some references resulting in evictions from the smaller memory will be hits in
the larger memory). Similarly, if e2 > [, the only pages that the larger memory
may evict are those with recency above /1, and these pages will never be stored
in the smaller memory either.

5 Experimental Assessment

5.1 Settings and Methodology

To assess the performance of EELRU, we used program traces covering a wide
range of memory access characteristics. There is no single widely acceptable
set of memory-intensive applications for virtual memory studies. Nevertheless,
our studied set is among the largest in the literature and is derived from three
different sources. Eight of the traces are of memory-intensive applications and
were used in the experiments of Glass and Cao [GlCa97]. Five more traces
are part of the Etch traces collection [LCBAB98]. Another six traces are of
programs that are commonly used in garbage collection and memory allocation
studies. Our study sets contain some overlap (two executions of the gce compiler,
as well as two traces of a Perl interpreter, all for different inputs). We describe
the traces in more detail below.

5.1.1 The SEQ Study Traces

The eight traces from [GlCa97] are only half of the traces used in that study.
The rest of the experiments could not be reproduced because the reduced trace
format used by Glass and Cao sometimes omitted information that was nec-
essary for accurate EELRU simulation.? To see why this happens, consider
the behavior of EELRU: at any given point, early evictions can be performed,
making the algorithm replace the page at point e on the LRU axis. Thus, the
trace should have enough information to determine the e-th most recently ac-
cessed page. This is equivalent to saying that the trace should be sufficiently
accurate for an LRU simulation with a memory of size e. The reduced traces of
Glass and Cao have limitations on the memory sizes for which LRU simulation

2In fact, two more traces from [GICa97], “es” and “fgm”, could have been used but were
not made available to us.
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Program | Description Min. simulatable
LRU memory
(4KB pages)
applu |Solve 5 coupled 608
parabolic/elliptic PDEs
gnuplot |Postscript graph generation 388
ijpeg |Image conversion 278
into JPEG format
m88ksim |Microprocessor 491
cycle-level simulator
murphi |Protocol verifier 533
perl Interpreted scripting language 2409
trygtsl | Tridiagonal matrix calculation 611
waveb |Plasma simulation 913

Figure 5: Information on traces used in [G1Ca97]

can be performed. Thus, the minimum simulatable memory size for EELRU
(which is larger than the minimum simulatable size for LRU) may be too large
for meaningful experiments. For instance, consider an EELRU simulation for
which the “earliest” early eviction point is such that the early region is 60% of
the memory (that is, 40% of the memory is managed using strict LRU). Then
the minimum memory for which EELRU can be simulated will be 2.5 times the
size of the minimum simulatable LRU memory. For some traces, this difference
makes the minimum simulatable memory size for EELRU fall outside the mem-
ory ranges tested in [GlCa97]. For example, the “gcc” trace was in a form that
allowed accurate LRU simulations only for memories larger than 475 pages (see
[G1Ca97]). Using the above early eviction assumptions, the minimum EELRU
simulatable memory size would be 1188 pages, well outside the memory range
for this experiment (the trace causes no faults for memories above 900 pages).

Figure 5 contains information on the eight traces for which EELRU could be
simulated, for easy reference. It is worth noting that this set of traces contains
representatives from all three program categories identified by Glass and Cao.
These are programs with no clear patterns (murphi, m88ksim), programs with
small-scale patterns (perl), and programs with large-scale reference patterns (the
rest of them).

5.1.2 The Etch Traces

The five Etch traces are of memory-intensive SPEC95 benchmark applications,
with no clear large-scale reference patterns. The Etch traces collection [LCBAB9S]
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also contains several traces from popular Windows applications (Word, Power-
point, etc.). Nevertheless, these did not seem to exhibit interesting virtual mem-
ory behavior (at least for the inputs used to generate the traces). Indeed, the
Etch traces were collected with processor cache studies in mind. The SPEC95
applications in the Etch traces, however, appeared more promising for virtual
memory studies. (For completeness, we also simulated EELRU on the rest of
the Etch traces and its performance was identical to LRU.)

The five traces studied are those of “go” (an AI program that plays the
game of “Go”), “CC1” (the compiler core for the gcc compiler, building SPARC
code), “compress” (a compression utility used to compress and decompress files
in memory), “perl” (the well-known scripting language, with an input manipu-
lating strings and prime numbers), and “vortex” (a database program).

5.1.3 The Small-scale Traces

An extra six traces were used to supply more data points. These are traces of ex-
ecutions that do not consume much memory. Hence, all their memory patterns
are, at best, small-scale. The applications traced are “espresso” (a circuit simu-
lator), “gec” (the C compiler, compiling its own source code), “ghostscript” (a
PostScript engine), “grobner” (a formula-rewrite program), “lindsay” (a com-
munications simulator for a hypercube computer), and “p2¢” (a Pascal to C
translator).

5.1.4 Simulation Parameters

All of the simulations were performed with recency information maintained for
2.5 times more pages than fit in memory. This recency range was split in about
40 equal-size regions (rounded so that the end of a region coincided with the
memory size, M). A histogram of references was maintained (i.e., the number
of recent references for each region). For each region before recency M and after
M, its endpoints are possible early and late eviction points, repectively. The
LRU part of memory was as small as possible, given the resolution of the traces.
This was commonly above 100 pages for all large traces.

One more parameter affects simulation results. Recall that replacement de-
cisions should be guided by recent program reference behavior. To achieve this,
distribution values need to be “decayed”. We discussed decaying the EELRU
statistics in Section 4.1 using the quantity p. In our actual implementation, the
decay is more crude in order to avoid the need to remember all the recencies of
the last M references. Decaying is performed in a memory-scale relative way:
the values for all our statistics are multiplied by a weight factor progressively so
that the M-th most recent reference (M being the memory size) has 0.3 times
the weight of the most recent one. The algorithm is not very sensitive with
respect to this value. Values between 0.1 and 0.5 yield almost identical results.
Essentially, we just need to ensure that old behavior matters exponentially less,
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and decays on a timescale comparable to the rate of replacement. For the pur-
pose of decaying statistics, “time” was defined as the number of references to
pages less recent than the last used eviction point. This enables adapting the

“interesting region” to the locality of the current workload.

5.2 Locality Analysis

To show the memory reference characteristics of our traces, we plotted recency-
reference graphs. Such graphs are scatter plots that map each page reference to
the page position on the recency axis. High-frequency references (i.e., references
to pages recently touched) are ignored, thus resulting in graphs that maintain
the right amount of information at the most relevant timescale for a clear picture
of program locality. For instance, consider the recency-reference graph for the
wave) trace, plotted in Figure 6. The graph is produced by ignoring references
to the 1000 most recently accessed pages. If such references were taken into
account, the patterns shown in the graph could have been “squeezed” to just
a small part of the resulting plot: interesting program behavior in terms of

locality is usually very unevenly distributed in time.

waveb
8000 .
7000 g : ot
: H
§ +
6000 4 4% : =~
_ 7 H
> hed # #3 t
c Fid & xg
@ Péd I H P’
$ 5000 {{* ¥ ¥ % H 4 ¥
= ] I g
5 it Fhi i
8 F4Y A & -4
8 4000 i7 7 g}‘ ; if
=) JF H §‘: i fF
& JE i S k5
Y Fged 1 3
;¥ A S =
3000 5 4 S &
[ 15 b
rE M oy S
t ¥ + 5y SR %
; +F o +¥ - ¥ ¥
2000 [ 4 3 A
¥ ¥ 'y &
# 17 3 s
i 34 3 &
P IF4 "¢ P +
1000 L By, B B/ ¥ . N
0 5000 10000 15000 20000 25000 30000 35000 40000
References

Figure 6: Recency-reference graph for waves.

Based on this graph, we can make several observations. First, wave) exhibits
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strong, large-scale looping behavior. There seem to be loops accessing over 6000
pages. The horizontal lines represent regular loops (i.e., pages are accessed in
the same order as their last access after touching the same number of other
pages). Note also the steep “upwards” diagonals which commonly represent
pages being re-accessed in the opposite order from their last access.

Patterns in recency-reference graphs convey a lot of information of this kind
and offer several advantages over the usual space-time graphs (e.g., see the plots
in [Pha95, G1Ca97]) for program locality analysis. To name a few:

e The information is more relevant. Instead of depicting which page gets
accessed, recency-reference graphs show how recently a page was accessed
before being touched again.

e High frequency information (e.g., hits to the few most recently accessed
pages) dilutes time in space-time graphs. It is common that all interesting
behavior (with respect to faulting) occurs only in a small region of a space-
time graph. High frequency information does not affect recency-reference
graphs.

e First-time reference information may dominate a space-time graph (e.g.,
allocations of large structures). Such information is irrelevant for paging
analysis and does not appear in a recency-reference graph.

Figures 7, 8, and 9 present recency-reference graphs for representative traces.
There are several observations we can make:

e All programs exhibit strong phase behavior in recency terms. That is, their
access patterns exhibit some clearly identified features that commonly
persist. Comparing the values of the horizontal and vertical axes gives a
good estimate of how long features persist (note that the aspect ratio of
the plots is usually not 1:1). For all plots, features most commonly last
for at least as many page references as their “size” in pages.

e The gnuplot graph exhibits a strong and large loop restricted to a very
narrow recency region. All references in the gnuplot trace were either to
the 200 most recently accessed pages (these are filtered out in the plot)
or to pages above the 15000 mark on the recency axis! This is to be
expected, as this trace shows gnuplot when run with a very large (8MB)
input file, which causes it to create an internal data structure of over
64MB and iterate over it three times. This example is somewhat artificial
but interesting: it shows what happens when a program written with no
paging considerations in mind is “abused” with inputs large enough to
make it page.

e The m88ksim graph initially displays a large loop (note the short horizon-
tal line), followed by a “puff-of-smoke” feature, and an area without dis-
tinctive patterns. The initial loop is a simple linear loop over a little more
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Figure 9: Recency-reference graphs for applu and murphi
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than 4500 pages. Note that it lasts for approximately 4500 references, indi-
cating that it is just a linear loop with two iterations. The “puff-of-smoke”
pattern is characteristic of sets of pages that are accessed all together but
in “random” (uniform) order. When some pages in the set get touched,
pages before them on the recency axis become less-recently-touched (i.e.,
move “upward”). Gradually, all accesses concentrate to higher and higher
points on the recency axis (with the size of the set being the limit). The
feature-less part of the m88ksim graph represents “random” accesses to
a large structure. Given the nature of the application we speculate that
this could be a heavily used hash-table.

e The perl graph also exhibits “puff-of-smoke” features, together with steep
diagonals (recall that these represent pages being re-accessed in the op-
posite order). The applu graph exhibits strong loops and steep upward
diagonals, but also downward diagonals—a sign of selective iteration over
some of the same data in the same order. The trygtsl graph shows linear
patterns, but no loops that iterate unchanged.

Other recency-reference graphs are similar to the ones shown.

Based on the recency-reference graphs we can identify areas for which EE-
LRU should exhibit a clear benefit. Thus, if a graph displays high-intensity
(dark) areas right above low-intensity (light) areas, EELRU should be able to
evict some pages early and keep in memory those that will be needed soon.
Comparing these graphs with the results of our simulations (in the following
sections) shows that this is indeed the case: the memory sizes for which EE-
LRU is particularly successful are near such intensity boundaries.

5.3 Experimental Results
5.3.1 SEQ Study Traces

Figures 10 and 11 show the page faults incurred by EELRU, LRU, OPT (the
optimal, off-line replacement algorithm), and SEQ for each of the eight memory-
intensive traces. SEQ is the algorithm of Glass and Cao [G1Ca97], with which
these traces were originally tested. A detailed analysis of the behavior of LRU
relative to OPT on these traces can be found in [G1Ca97]. Here we will restrict
our attention to EELRU.

As can be seen, EELRU consistently performs better than LRU for seven
out of eight traces (for murphi, EELRU essentially performs LRU replacement).
A large part of the available benefit (as shown by the OPT curve) is captured
for all applications that exhibit clear reference patterns. A comparison with the
SEQ algorithm is also quite instructive.?

3The results for SEQ were obtained by running the simulator of Glass and Cao on the
traces. Testing SEQ on other traces would require significant re-engineering of the simulator,
as its replacement logic is tied to the trace reduction format used in [GICa97].
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Figure 10: Fault plots for traces from the SEQ study. For gnuplot, the SEQ
curve almost overlaps the OPT curve.
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The idea behind SEQ is to detect access patterns by observing linear fault-
ing sequences (the linearity refers to the address space). Thus, SEQ is based on
detecting address-space patterns, while EELRU is based on detecting (coarse-
grained) recency-space patterns. Each approach seems to offer distinct benefits.
EELRU is capable of detecting regularities that SEQ cannot capture. For in-
stance, a linked list traversal may not necessarily access pages in address order,
even though it could clearly exhibit strong looping behavior. Such traversals are
straightforwardly captured in the recency information maintained by EELRU.
On the other hand, SEQ can detect linear patterns more quickly than EELRU,
and thus get more of the possible benefit in such cases. The reason is that
recency information does not become available until a page is re-accessed (i.e.,
during the second iteration of the loop), while address information is available
right away. The latter observation has consequences on the robustness of the
two algorithms: EELRU is fairly conservative and only diverges from LRU in
the case of persistent reference patterns. SEQ, on the other hand, is more risky
and guesses about traversals which it has not encountered before (e.g., presumes
that all sequential scans of more than 20 pages will be larger than main mem-
ory). Therefore, we expect that EELRU is much less likely to cause harm for
randomly selected programs with no large-scale looping patterns.

The results of our experiments agree with the above analysis. EELRU out-
performed SEQ for three of the traces (applu, ijpeg, perl), SEQ was better for
another three (gnuplot, trygtsl, and wave5), while for m88ksim and murphi the
difference was small (EELRU was slightly better in one case and slightly worse
in the other). Note that SEQ performed better for programs with very clear
linear access patterns. This is a result of the early loop detection performed
by SEQ. Even in these cases, however, EELRU captured most of the available
benefit. For all traces with recency patterns that could be exploited, EELRU
consistently yielded improvements to LRU, even when the SEQ results seemed
to indicate that few opportunities exist (e.g., ijpeg, perl).

Overall, we believe that the recency-based approach of EELRU is simpler,
intuitively more appealing, and of more general applicability than address-based
approaches like SEQ. The generality conjecture cannot, of course, be proven
without extensive experiments and widely accepted “representative workloads”
but the preliminary results of our experiments seem to confirm it.

Finally, as shown in the plots, EELRU performance exhibits small instabil-
ities. As can be seen, EELRU is not a stack algorithm as it produces what
is known as “Belady’s anomaly”: increasing the size of physical memory may
increase the number of page faults. This is a result of the adaptive behavior of
EELRU, which is intrinsic to the algorithm. As we saw in Section 4.2, the fall-
back algorithm used is a stack algorithm. Nevertheless, the recency histogram
that EELRU keeps can change with time and the notion of “time” depends on
the memory size. Thus, the exact adaptation decisions of EELRU are different
for different memory sizes.

31



5.3.2 Etch Traces

Figures 12 and 13 show the results of our experiments on the Etch traces.
Note that the perl trace shown is for a different execution (much smaller input)
than that of Figure 11. Nevertheless it exhibits very similar behavior. Overall,
EELRU performs much better than LRU in three of these traces (compress, go,
perl) and similarly to LRU in the other two (ccl, vortex). This supports the
claim that EELRU can outperform LRU in common cases, and will never be
“fooled” by much, as its adaptivity will help it revert to LRU when needed.

5.3.3 Small-scale Traces

Our second experiment applied EELRU to traces without extensive memory
requirements. Even though these traces are not interesting per se for a paging
study, they help demonstrate that our approach is stable and handles a wide
range of available memories. Additionally, these traces confirm that the patterns
that EELRU recognizes are not unique to programs written with paging in mind.
Also, being able to adapt both to large-scale and to small-scale patterns is useful
for any algorithm to be employed as a replacement algorithm in a multi-process
environment. (See Section 5.4.)

Figures 14 and 15 show the results of applying EELRU to these traces.
Because the traces are small and have no distinctive patterns (e.g., see the
gce recency-reference plot in Figure 8), we would expect EELRU to behave
similarly to LRU. This confirms the robustness of the algorithm—EELRU is
unlikely to perform worse than LRU if no regular patterns exist. As can be seen
in the fault plots, this is indeed the case. Note, however, that even for some of
these traces EELRU manages to get a small benefit compared to LRU (around
10% less faulting on average). In particular, EELRU seems to be capable of
detecting and exploiting even very small-scale patterns. An examination of the
gce recency-reference plot (Figure 8) is quite interesting. We see that there
are two small regions where high-intensity (dark) areas are directly above low-
intensity (light) areas. EELRU is exploiting exactly these small-scale patterns,
and exhibits most of its benefit for a memory size around 150—the boundary
of the dark and light areas in the plot.

5.4 EELRU in Actual Systems

There has been a long tradition of studying replacement algorithms in isolation,
using program traces and analytical evaluations. Nevertheless, for a replacement
algorithm to be deployed in practice, several other factors are important. Some
important questions concern the efficiency of the algorithm, the implementation
effort required, its performance in multiprocess workloads, etc.

With respect to such concerns, EELRU is well suited for a practical imple-
mentation. The algorithm does maintain more data than LRU, but the recency
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Figure 12: Fault plots for Etch traces. The perl trace is for a different execution
than that of Figure 11, but exhibits similar behavior.
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data structures (e.g., a linked list) are overall quite small. The bookkeeping
performed is trivial, although somewhat tedious. On every memory reference
to a not-too-recently-accessed page (i.e., above the first early eviction point)
the appropriate recency region needs to be obtained and its hit number needs
to be incremented. Cost-benefit analysis is only performed at page fault time.
Decaying of statistics is performed every several fault times. Both tasks consist
of a few floating point operations (computing the cost and benefit and dividing
the hit counts for every region by a decay factor).

Of course, EELRU is not 100% realizable, as it suffers from the same per-
formance drawback as LRU: in the ideal case, statistics need to be update for
every single memory reference. Nevertheless, all standard in-kernel LRU approx-
imations (e.g., segmented FIFO [TuLe81, BaFe83]) can be used with EELRU.
These approximations have been shown to preserve the behavior characteristics
of LRU with minimal per-reference overhead. A particularly promising approx-
imation consists of a segmented queue where the first segment is maintained by
a “clock algorithm” | assisted by hardware-managed reference bits for each page.
The reference bits can provide coarse-grained information about the hits that
preceed the earliest eviction point, allowing the consideration of an even earlier
eviction point.

Additionally, there are several possibilities for applying EELRU (or a suit-
ably adapted, recency-based variant) to multi-processing systems. First, EE-
LRU itself could be useful as a “global” algorithm (i.e., managing all pages the
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Figure 15: Fault plots for more small-scale applications. For lindsay, and p2c
the EELRU line overlaps the LRU line.

same regardless of the process they belong to). Second, recency information of
the kind maintained by EELRU could also help memory partitioning. That is,
if a process incurs a lot of faults for recently evicted pages, a replacement algo-
rithm could allocate more memory to that process, at the expense of a process
for which a smaller memory space would not cause many faults.

6 Conclusions

Replacement algorithms are valuable components of operating system design
and can affect system performance significantly. In this article we presented
EELRU: an adaptive variant of LRU that uses recency information for pages not
1n memory to make replacement decisions. We believe that EELRU is a valuable
replacement algorithm. It is simple, soundly motivated, intuitively appealing,
and general. EELRU addresses the most common LRU failure modes for small
memories, while remaining robust: its performance can never be worse than
that of LRU by more than a small constant factor. Simulation results confirm
our belief in the value of the algorithm. Additionally, EELRU demonstrates the
virtues of a recency-based approach to replacement and advances the concept
of timescale relativity for adaptive algorithms. We believe that both of these
elements will be important for future research work in program locality.
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