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Abstract straightforwardly many common functional opera-
tors (a large part of the Haskell Standard Prelude

FC++ is a library for programming functionally in [19]). The library is currently quite rich in func-
C++. Compared to other C++ functional program-tionality and has an efficient implementation.
ming libraries, FC++ is distinguished by its power-
ful type system which allows manipulating In a previous paper [16], we introduced FC++ and
parametrically polymorphic functions (e.g., pass-its innovative type system, showed the components
ing them as arguments to other functions andof the library, and demonstrated how its implemen-
returning them as results). tation is more efficient than previous similar

. _attempts. In this paper we show how to leverage
In this paper, we show how FC++ can be used inhe |iprary to create simple, efficient, and safe

common OO programming tasks. We demonstrat@mplementations of common OO design patterns
FC++ implementations of several common designg.

patterns (Adapter, Builder, Command, and more).

Compared to conventional C++ implementationsCertainly a lot has been written about language

of these patterns, our implementations are eithegupport for implementing design patterns (e.g.,

simpler (in that fewer classes/dependencies arf4][6]), functional techniques in OO programming,

needed), more efficient, or more type-safe (thanketc. Some of the approaches in the literature are

to parametric polymorphism and type-inference). even very close in philosophy to our work. For
instance:

1 Introduction « Alexandrescu [2] demonstrates how the meta-

programming capabilities of the C++ language
can be used to yield elegant pattern implemen-
tations.

Kihne’s dissertation proposes several patterns

Functional and object-oriented programming are

the most active fields of research in programming

languages and methodologies. Several pieces of
work have attempted to connect the two paradigms. UMt - _
Among them are the Pizza language [18], extend-  INSPired by functional programming [14].

ing Java, as well as libraries for programming func-*  Using functional techniques (higher-order

tionally in C++ [11][12][15][21]. FC++ [16] is one functions) to |mplement the Opserver and

such library, distinguished from all others by its ~ Command patterns is common—in fact, even
powerful type system: FC++ allows the program- standard p_ractlce in Java apd Smal_ltalk.

mer to define and fully manipulate parametrically® The benefits of polymorphic and higher-order
polymorphic functions. The conventional C++way  functions have often been discussed in the
of representing polymorphic functions is via func-  functional programming literature [22].

t;)g templatesh(el.g., sefe the C++ Sta?dard L'bfrfar)fherefore, by necessity, part of our material is not
[20]). Nevertheless, function templates su erconceptually novel. In particular, Section 3 shows

severe limitations—e.g., they cannot be passed &hat FC++ offers a rich framework for OO tasks,
parameters to other functions or returned as result%ut similar results can be obtained with other lan-
FC++ polymorphic functions overcome these limi-

tations. This allows FC++ to re-implement



guages or libraries (although, among C++and return them as results—even if they are poly-
approaches, FC++ is arguably the most complete)morphic. There are two kinds of functoiddirect

) ] ) andindirect. Direct functoids are the usual repre-
Section 4, however, shows new implementations Ofentation for functions in FC++. Direct functoids

common patterns by concentrating_on some of the.an pe either monomorphic or polymorphic. Indi-
more novel elements of FC++—mainly type infer- ro. functoids, on the other hand, must always be
ence and its ability to manipulate polymorphic jyonomorphic but can exprefisst-classfunctions.
functions. We see how parametric polymorphismry 4t is with indirect functoids, we can define vari-
can find its way into some design patterns, howgpes that range over all functions with the same
FC++ can handle such tasks, and how using pargype signature. Thus, indirect functoids can be
metric_polymorphism results into more genericjewed as indirect function references, much like
code. [Note that we do not discuss improvements/c.++ function pointers. In addition to direct and
in design patterns’ implementations by the merengjrect functoids, FC++ provides a number of use-
addition of parametric typing (€.g., C++ class tem-| gperations for creating functoids, composing
plates) in a language. These are well understooghem specializing them, etc. We shall now discuss
and are even discussed in [8], as implementation, few of the key components of FC++ in more
suggestions.] detail.

Although some C++ background is required forngirect functoidsare represented as thenN fam-
much of the paper, we believe that the principlesy of classesrunns specify function signatures via
are interesting even to non-C++ programmers. Iemplate parameters;is the number of arguments.
part_lcular, the paper offers insights for languager, example Fun2<int,char,string> is the type
designers and shows a platform where both subat 5 two-argument indirect functoid which takes an
type polymorphism and parametric polymorphism; . and achar and returns aring . Note that the
with type inference are readily available as com-irt \ template arguments comprise the argument
plementary tools for problem solving. types of the function, and the last template argu-
_ _ ment is the result type. Thus, the simplest kind of
2 Background: Functional Programming indirect functoid is &Funo<void> —a function that
with FC++ takes no arguments and returns no result. (As we
show in Section 3, this simplest functoid plays a

We begin by introducing FC++. We divide this significant role in a number of patterns.)

introduction into two parts. Section 2.1 gives an
overview of the FC++ library, from the perspective A common way to create indirect functoids is with
of a user of the library components. Section 2.2y t4 fun . ptr to_fun  transforms a normal

describes a few of the important implementationc++ function into a functoid. Here is a simple

techniques of the FC++ library. These will be example, which also demonstrates how indirect

employed in Section 4 and are necessary for thnctoids can range over different functions:
user who intends to write polymorphic functions

using FC++. The ability to manipulate polymor- int i_times( int x, in ty){ retun xty;}
phic functions is what sets FC++ apart from all "t I_Plus( int x, int y ) { retumn x+y}

other functional programming libraries in C++. For Fun2<int.intint> f;

a more complete introduction to FC++, the reade¥ = pir to_fun(si_times);

should refer to [16]. f(3,4); // returns 12
_ f = ptr_to_fun(&i_plus);
2.1 FC++ Basics f(3,4); // returns 7

In FC++, we express functions as instances ofNote thatf 's behavior depends on which functoid

classes that follow certain conventions. We callit is bound to. This may seem reminiscent of OO
such classeBunctoids The key advantage to using dynamic dispatch (where a method call depends
functoids (rather than C++ functions or function upon the dynamic type of the object that the
templates) is that we can pass them as parametersceiver is bound to), and rightly so! There is just



such a virtual method call buried inside the imple-theint 3 , and whose&econd field is thechar ‘¢’
mentation of all indirect functoids. Indeed, the C++ standard defines a template func-

) ) ) _tion for the same purpose, which goes by the name
Indirect functoids are more versatile than functlonstd::mke_palir . However, compared tok_pair |,

pointers: they employ automatically currying, they . make pair  suffers extreme limitations, by
can be bound to new function objects that are crey;it e of being defined as a template function.
ated on-the-fly, and they exhibit a form of SUbtypeTemplate functions cannot be passed as parame-
polymorphism (see [16]). What follows will dem- a5 *\which means we cannot use the functional
onstrate some of these features, which haveimport-echniques mentioned above (i.e., currying and
tant applications in Section 3 and Section 4. composition) on templates. Direct functoids avoid
these limitations. For example, we can say

curry2( mk_pair, 3)

return a new direct functoid which takes one
argument of any typeT, and returns a
std::pair<int, T> whossefirst  field is3.

Curryingis a functional technique that allows us to
bind a subset of a function’s arguments to specifi%
values. For example, we can usery to bind the
first argument of to the valuel, creating a new
one-argument function:

Funi<intint> inc = curry2(f,1): 2.2 Expressing Polymorphic FC++ Functoids

inc(4); // returns 5 —i.e., i_plus(1,4) In the previous example, we demonstrated passing

(Thezincuny2 refers to the number of arguments @ Polymorphic functoid to a higher-order function
thatf expects.) In fact, FC++ also allows the curry- Which returned a polymorphic result. How is this
ing to be implicit—when a functoid is called with accomplished using C++? The trick in FC++ is to
fewer actual arguments than it expects, it returns &S€ & struct with nested template members for both
curried functoid. For instance, the previous examhe actual function as well as an explicit represen-

ple can be written more simply as: tation of the type signature of functoid, so that we
can exploit the language’s type inference of func-
Funl<intint>inc = f(1); tion arguments. Thus in FC++ we would define

inc(4); I returns 5 — i.e., i_plus(1,4) mk_pair as:

Although this s_impler fqrm is _vvh_af[ a typical FCJ_r+ struct MkPair {

user would write, we will avoid it in this paper, in  template <class T, class U>

order to emphasize that currying is done through std::pair<T,U> operator()( T x, U y ) {
polymorphic functions (e.gcurry2 ) that manipu- } return std::pair<T,U>(x,y);

late other (possibly polymorphic) functions. template <class T, class U

Functional compositioris easily expressed with ~ Struct Sig _
. : FunType<T,U,std::pair<T,U> > {};
compose : } mk_pair:

Funl<int,int> inc2 = compose(inc,inc);

inc2(4): /f returns 6 — ie.. inc(inc(4)) Theoperator) ~ member (the usual way to define

a function object in C++) is defined just as we
Currying and composition are among the powerfulwould expect. The key is theig member. FC++
functional techniques for building new functions functoids all have membestruct s namedsig
on-the-fly. which encode their function signatures. Theges
containtypedef S hamedResultType , FirstArg-
Unlike indirect functoidsdirect functoidscan be Type, etc., according to FC++ library conventions.
polymorphic. Consider the simple example of a1g ease the task of defining susiy members, we
function to create atd::pair . (std::pair IS the  jnnherit the generi€unType class which defines the
template struct in C++ used to represent a pair ofypedefsFunType follows the same conventions as
values.) The direct functoidnk pair makes a the indirect functoidrunN classes (the first few
std:zpair  from its two parameters. For example, template parameters are the argument types and the

mk_pair(3,¢) . final template parameter is the result type).
returns astd::pair structure whosérst  field is



This encoding mechanism is the key that allowsfunctoidsf andg of typesF and G, respectively.
FC++ to create higher-order functoids that cancompose(f,g)  returns a (possibly polymorphic)
directly manipulate polymorphic functoids. Specif- direct functoid with the followingig member:
ically, other functoids can determine what the

result type of a particular polymorphic functoid 'eMPlate <class T>

. struct Sig : public FunType<
would be, for given arguments. T 9:p P

. . . typename F::Sig<
To see how, consider the simple functaipbly , yt?/pename G::gig<T>::Resu|tType>::

which applies a binary function to its arguments. ResultType>

That is, apply(f,x.y) behaves just as(x.y) &

does. Iff is monomorphic, it is easy to implement _ _

such a function in C++ (using techniques from the 1 hat is (take a big breath), the return typecoi-
STL [20]). However, suppose we want to usePose(f.g) Is a functoid of a single argument of
apply on a polymorphic function likenk_pair — type T, whose return type is the same as that of

how do we do it? In FC++, we just say: functoidf whenf's argur_nent type, is the same as
the return type of functoid wheng’'s argument is

struct Apply { of typeT.
template <class F, class X, class Y>
typename F::Sig<X,Y>:ResultType Despite FC++’s abilities, it is nhot a complete func-
operator()( F f, X x, Y'y){ tional language with polymorphism and type infer-

return f(x,y);

}

template <class F, class X, class Y>

ence. One of the main drawbacks is that variable
types have to be declared explicitly. Although

struct Sig : public FunType<F,X,Y, FC++ type inference eliminates the need for typing
typename F::Sig<X,Y>::ResultType> {}; intermediate results, if the final result of an FC++
} apply; expression needs to be stored, the variable should

Note thatapply's  result type depends on both the be explicitly typed. This restriction will hopefully

: - be removed with the addition of thgpeof key-
%ﬁzi\?ésthe functoid and the types of arguments Itword in the next revision of the C++ standard.

F::Sig<X,Y>:ResultType Although the above examples may seem quite
expresses this. Thus, for instance, complicated, there are not too many useful abstract
Wi”i‘;ﬁgﬁ:‘;—pa”’ 3,¢) higher-order functions likeompose and they are

R . all already pre-defined in FC++. As a result, clients

MakePair::Sig<int,char>::ResultType . .
which is just a typedef for are shielded fr_om mos:t of the_complexrcy. Never-

std::pair<int,char> theless, generic comb_lnators_llkerry ar)d com-
Note thatapply also has its own nestezly mem-  Pose OWe their generality to this mechanls_m. Thu_s,
ber, which means thabply itself could be manip- most of th_e FC++ examples we shqll see in Section
ulated by other higher-order functions. 4 are rgahzable only because of this unique feature

of our library.
The process of inferring a function’s type from its
arguments is calletype inferenceType inference 3 Reusability with Object-Oriented and
is automatic in modern functional languages (e.g.Functional Patterns
Haskell and ML). Type inference in C++ is semi- ] ] ] o
automatic: the argument types can be inferred fronfunctional  programming  promotes  identifying
the actual arguments, but using these types to infd?i€ces of functionality as just *functions” and
the return type of a function has to be done “manu manipulating them using higher-order operations
ally”. This is the role that thesig template mem- ©Nn fu.n.ctlons. These hlgher-order fu_nctl_ons may be
bers play in FC++. specific to _the domain pf the appllc_atlon or they
may be quite general (like the currying and func-
As a more realistic example of type inference, contion composition operations are). Several design
sider thecompose function applied to two unary patterns [8] follow a similar approach through the



use of subtype polymorphisnSubtype polymor- Here is a brief example which illustrates how Com-
phism allows code that operates on a certain classiand might be employed in a word-processing
or interface to also work with specializations of the application:

class or interface. This is analogous to higher-order
functions: the holder of an object reference may®
express a generic algorithm which is specialize
dynamically based on the value of the referencey,
Encapsulating functionality and data as an object is
analogous to direct function manipulation. Otherclass CutCommand : public Command {
code can operate abstractly on the object's inter- Document*d;

i : : blic:
face (e.g., to adapt it by creating a wrapper objectf“CftCOmmand(Documem* dd) - d(dd) {

void execute() { d->cut(); }

lass Command {
ublic:
virtual void execute()=0;

It has long been identified that functional tech-,.
niques can be used in the implementation of design
patterns. For instance, the Visitor pattern is ofternclass PasteCommand : public Command {
considered a way to program functionally in OO Document* d;

languages. (The interested reader should see [18}blic: )

and its references for a discussion of Visitor.) The ngtigg:g%”?gfszggg}dd) d(dd) §
Smalltalk classviessageSend (and its variants, see . '

[3], p.254), the C++ Standard Library functors,

Alexandrescu’s framework ([2], Ch. 5), etc., are all Document d;

trying to capture the generic concept of a “func- -

tion” and use it in the implementation of the Com- Command* menu_actions] = {

mand or Observer pattern. Here we will briefly ng g;;?eocn;?n?::ﬁ‘g’d)

review some of these well-known techniques, from '

the FC++ standpoint, by using indirect functoids. };

Command. The Command pattern turns requestsmenu_actions[choice]->execute();
into objects, so that the requests can be passe : ,
stored, queued, and processed by an object whic he ?bstr?ctommand(_:lass exIsts ogly tlc; de:]lne the

knows nothing of either the action or the receiver'?]ter ace for gxec;;tlng_ comman ”S' . rl]m ermore,
of the action. An example application of the patternt Eexecute() Interface Is just a call with no argu-

is a menu widget. A pull-down menu, for instance,ments or results. 'In other words, the Wh‘?le com-
must “do something” when an option is clicked; ma_md » pattern S|mp_ly represents a, function
Commandembodies the “something”. Command iject ' Fm”_‘ a_lfunctlonal programmers“ perspe::-
objects support a single method (usually called'’® Commands just a class wrapper for a *lambda

execute ). Any state that the method operates on> thunk’—an object-oriented counterpart of a

needs to be captured inside a command object. functional |d|om. Indlr_ect functoids in FC++.repre—
sent such function-objects naturallyF@no<void>

The motivation for using the Command pattern iscan be used to obviate the need for both the
twofold. First, holders of command objects (e,g_,abstract:ommandclass and its concrete subclasses:
menu widgets) are oblivious to the exact function- _
. . . . Document d;
ality of these objects. This decoupling makes the
widgets reusable and configurable dynamicallyruno<void> menu_actions]] = {
(e.g., to create context-sensitive graphical menus).curry(ptr_to_fun(&Document::cut), &d),
Second, the commands themselves are decoupledurry(ptr_to_fun(&Document::paste), &d),
from the application interface and can be reused in -
different situations (e.g., the same command can b
executed from both a pull-down menu and a t00|'}Henu_actions[choice]();
bar).



In this last code fragment, all of the classes thathe receivers—their ability to receive updates—is
comprised the original design pattern implementaencapsulated as aun0O<void> . The abstract
tion have disappearedlno<void> defines a natu- Observer class disappears. The concrete observers
ral interface for commands, and the concretesimply register themselves with the subject. We
instances can be created on-the-fly by making indiwill not show the complete code skeletons for the
rect functoids out of the appropriate functionality, Observer pattern, as they are just specializations of
currying arguments when necessary. the code for Command. Nevertheless, one aspect is

_ worth emphasizing. Consider the code below for a
The previous example takes advantage of the faqtyncrete observer:

that ptr to fun  can be used to create functoids
out of all kinds of function-like C++ entities. This class ConcreteObserver {
includes C++ functions, instance methods (which gf)”cretesumec‘& subject;
H H uplic:
are transformed |n_to normal functions thaq take & ConcreteObserver( ConcreteSubjects. s )
pointer to the receiver object as an extra first argu-

’ : : subject(s)
ment—as in the example), class (static) methods, {
C++ Standard Libraryfunctional> objects, etc. s.attach( curry( ptr_to_fun(
This is an example of design inspired by the func- &ConcreteObserver::be_notified
tional paradigm: multiple distinct entities are uni- ). this ) );

fied as functions. The advantage of the unification

is that all such entities can be manipulated using g be notified() {

the same techniques, both application-specific and  cout << "new state is" <<

generic. subject.get_state() << endl;
}

Observer. The Observer pattern (a.k.a.Publish- ¥

Subscr_ib¢ is used to register relatgq objects Note again howptr_to_fun  is used to create a
dynamically so that they can be notified when i oot finctoid out of an instance method. The
another objects state changes. The main partiCizeg,ting functoid takes the receiver as its first

pants of the pattern are wae_Ct and mul_tlple parametercurry is then used to bind this parame-
obs_ervers Obs«_arvers register .W'th the S“ble‘:‘t byter. This approach frees observers from needing to
calling one of its rgethods (\.N'th the:\ c_(l)n\llentlo_nal conform to a particular interface. For instance, the
name attach ) and un-register similarly (V2 apnove concrete observer implemebdsnotified

detach ). The subject notifies observers of change§giaaq of the standangdate method, but it still

in its state, by calling an observer methoo'works fine. Indeed, we can turn an arbitrary object
(update ). into an observer simply by making a functoid out

The implementation of the observer pattern conf one of its method calls—the object need not
tains an abstradbbserver class that all concrete €Ven be aware that it is participating in the pattern.

observer classes inherit. This interface has only thd his decoupling is achieved by capturing the natu-
update method, making it similar to just a single ral abstraction of the domain: the function object.

function, used as a callback. In fact, the 'mplemen'Summarizing, the reason thauno<void> can

tatior_l of the Observer pattern can be viewgd as ‘?’eplace the abstracthserver andCommandclasses
special case of the Command patern. Qallmg §s because these classes serve no purpose other
execute method of the command object is analo-y,, 14 create a common interface to a function
gous to calling theipdate method of an observer call. In Commang the method is nameekecute()
object. and in Observer , it is called update() , but the

The FC++ solution strategy for the Observer pat:"ames of the methods (and classes) are really
tern is exactly the same as in Command. The Sugmmaterial to the pattern. Indirect functoids in

ject no longer cares about the type of its receiverd C*+ obviate the need for these classes, methods,
(i.e., whether they are subtypes of an abstracfnNd names, by instead representing the core of the

Observer class). Instead, the interesting aspect of



interface: a function call which takes no argumenttion as a function and causes the computation to
and returns nothing. occur only when the function is actually called
o ) (i.e., when the result is needed). For instance, in
C++'s parameterization mechanism lets us extengc,y g callfoo(ab)  can be delayed by writing it
this notion to functions which take arguments andaScurryZ(foo, a, b) . The latter expression will
return values. For example, consider an observerqy,m a 0-argument functoid that will perform the
like scenario, where the notifier passes a value (fobriginal computation, but only when it is called.

instance, a string) to the observesgate method, Ty passing this functoid around enables it to be
and theupdate returns a value (say, an integer). o\ qjuated lazily.

This can be solved using the same strategy as

before, but using &uni<string,int> instead of a We should mention that FC++ defines some more
FunO<void> . Again, the key is that the interface tools for conveniently expressing lazy computa-
between the participants in the patterns is adetions. First, theLazyPtrProxy  class in FC++

quately represented by a single function signature;Works as a generic form of thenageProxy men-

extra classes and methods (with fixed names) arioned earlier. ALazyPurProxy ~has the same inter-
unnecessary to realize a solution. face as a pointer to an object, but it does not

actually create the object until it is dereferenced.
Virtual Proxies. The Virtual Proxy pattern seeks That is, LazyPtrProxy is a way to delayobject
to put off expensive operations until they are actu-construction(as opposed to method calls). Second,
ally needed. For example, a word-processor mayC++ contains an implementation of lazy list
load a document which contains a number ofdata structure. This enables interesting solutions to
images. Since many of these images will reside orsome problems. For example, to compute the first
pages of the document that are off-screen, it is noN prime numbers, we might create an infinite
necessary to actually load the entire image fron(lazy) list of all the primes, and then select just the
disk and render it unless the user of the applicatiorirst N elements of that list. FC++ lazy lists are
actually scrolls to one of those pages. In [8], ancompatible with the data structures in the C++
ImageProxy class supports the same interface as atandard Library and can be processed by a multi-
Image class, but postpones the work of loading thetude of predefined FC++ functions.

image data until someone actually requests it. _ _
_ _ 4 Design Patterns and Parametric Polymor-
In many functional programming languages, thephism

Virtual Proxy pattern is unnecessary. This is
because many functional languages emplagy In the previous section, we saw how several com-
evaluation This means that values are never com-smon design patterns are related to functional pro-
puted until they are actually used. This is in con-gramming patterns. All of our examples relied on
trast tostrict languages (like all mainstream OO the use of higher order functions. Another trait of
languages), where values are automatically commodern functional languages (e.g., ML and
puted when they are created, regardless of whethetaskell) is support for parametric polymorphism
or not they are used. with type inference. Type inference was discussed
) ) ] ) ] in Section 2.2: it is the process of deducing the
Since C++ is strict, FC++ is also strict by default. retyrm type of a function, given specific arguments.
Nevertheless, a value of typecan be made lazy by | this section, we will examine how some design
wrapping the computation of that value in a paterns can be improved if they employ paramet-
Fun0<T>. This is a common technique in strict . polymorphism with type inference and how
functional languages. It encapsulates a computgyey can further benefit from the entire arsenal of
FC++ techniques for manipulating these polymor-
1. A tuple of indirect functoids can be used if multiple func- phic functions.(The discussion of this section is
tion signatures are defined in an interface; the example ironly relevant for statically typed OO languages,

[8] of Command used for do/undo could be realized in |jke Java, Eiffel, or C++. The novelties of FC++ are
FC++ with a std::pair<Fun0O<void>,Fun0<void>> ,

for instance.




in its type system—it has nothing new to offer to a
dynamically typed language, like Smalltalk.)

4.1 Parametric vs. Subtype Polymorphism

Design patterns are based on subtype polymor-
phism—the cornerstone of OO programming.

Parametric polymorphism, on the other hand, is not
commonly available in OO languages, and, even
when itis, its power is limited (e.g., there is no type

inference capability). FC++ adds this capability to

C++. Itis interesting to ask when parametric poly-

morphism can be used in place of subtype poly-
morphism and what the benefits will be, especially
in the context of design patterns.

Parametric polymorphism is a static concept: it®
occurs entirely at compile time. Thus, to use a

parametrically polymorphic operation, we need to

know the types of its arguments at each invocation
site of the operation (although the same operation
can be used with many different types of argu-

ments). In contrast, subtype polymorphism sup-

ports dynamic dispatch: the exact version of the
executed operation depends on the run-time type of
the object, which can be a subtype of its statically

known type.

Therefore a necessary condition for employing
parametric polymorphism is to statically know the
type of operands of the polymorphic operation at
each invocation site. When combined with type
inference, parametric polymorphism can be as con-
venient to use as subtype polymorphism and can be
advantageous for the following reasons: .

* No common supertype is requir€the issue of
having an actual common superclass or just
supporting the right method signature is simi-
lar to thenamed/structural subtypindilemma.

All mainstream OO languages except Small-
talk use named subtyping: a type A needs to
declare that it is a subtype of B. In contrast, in
structural subtyping, a type A can be a subtyp
of type B if it just implements the right method

impossible to modify pre-compiled code, or it
may be tedious to manipulate existing inherit-
ance hierarchies, or the commonalities cannot
be isolated due to language restrictions (e.g.,
no multiple inheritance, no common interface
signature). Even in languages like Java where a
supertype of all types exists (tlmject type),
problems arise with higher-order polymorphic
functions, like ourcurry operator. The prob-
lem is that arobject reference may be used to
point to any object, but it cannot be passed to a
function that expects a reference of a specific
(but unknown) type. Thus, implementing a
fully generic curry with subtype polymor-
phism is impossible.

Type checking is stati®Vith subtype polymor-
phism, errors can remain undetected until run-
time. Such errors arise when an object is
assumed to be of a certain dynamic type but is
not. Since the compiler can only check the
static types of objects, the error cannot be
detected at compile-time. In fact, for many of
the most powerful and general polymorphic
operations, subtype polymorphism is impossi-
ble to use with any kind of type information.
For instance, it would be impossible to imple-
ment a genericompose operator with subtype
polymorphism, unless all functions composed
are very weakly typed (e.g., functions from
Object S t0 Object S). The same is true with
most other higher-order polymorphic opera-
tions (i.e., functions that manipulate other
functions).

Method dispatch is staticDespite the many
techniques developed for making dynamic dis-
patch more efficient, there is commonly a run-
time performance cost, especially for hard-to-
analyze languages like C++. Apart from the
direct cost of dynamic dispatch itself, there is
also an indirect cost due to lost optimization
opportunities (such as inlining).

.2 Pattern Examples

signatures. The advantage of requiring a cOMagapter. The Adapter pattern converts the inter-
mon superclass is that accidental conformancgyce of one class to that of another. The pattern is
is avoided. The disadvantage is that sometimegien yseful when two separately developed class
it is not easy (or even possible) to change theierarchies follow the same design, but use differ-
source code of a class to make it declare that itnt hames for methods. For example, one window
is a subtype of another. For instance, it may bggy kit might display objects by callingaint)



while another callsdraw() . Adapter provides a tion time instead of the update time. A better
way to adapt the interface of one to meet the conapproach is:

straints of the other.
compose(

Adaptation is remarkably simple when a functional ~ curry2(ptr_to_fun(&AnObserver::update),
design is followed. Most useful kinds of method this), )
. . . . ptr_to_fun(current_time))

adaptation can be implemented using the currying
and functoid composition operators of FC++, with- In this example we combined currying with func-
out needing any special adapter classes. Thes®n composition in order to specialize the inter-
adaptation operators are very general and reusablace. The resulting function takes no arguments but

_ uses global state (returned by therent_time()
Consider the Command or the Observer pattern. AFoutine) as the value of the argument of tiwate
we saw, in an FC++ implementation there is N0 aqq 1n this way, each update will be times-

rl\l/leed for abs_trai:t)b;erver or Comga”d classes. tamped with the value of the system clock at the
ore interestingly, the concrete observer or COMyme' o the |ndate!

mands do not even need to support a common

interface—their existing methods can be convertedther parametric polymorphism approaches (e.g.,
into functoids. Nevertheless, this requires that thehe functional part of the C++ Standard Library
existing methods have the right type signature. Fof20], or Alexandrescu’s framework for functions
instance, in our ConcreteObserver example, [2], Ch.5) support currying and composition for
above, theve_notified ~ method was used in place monomorphicfunctions. The previous examples
of a conventionalipdate method, but both meth- demonstrate the value of type inference, which is
ods have the same signature: they take no arguot unique to FC++. Nevertheless, FC++ also
ments and return no results. What if an existingextends type inference tpolymorphicfunctions.
method hasalmostthe right signature, or if meth- We will see examples of currying and composition
ods need to be combined to produce the right sigef polymorphic operations in the implementations
nature? of the next few patterns.

For an example, consider a classpbserver , that  pecorator. The Decoratorpattern is used to attach
defines a more general interface than what igdditional responsibilities to an object. Although
expectedAnObserver may define a method: this can happen dynamically, most of the common
uses of the Decorator pattern can be handled stati-
cally. Consider, for instance, a generic library for
We would like to use this method to subscribe tothe manipulation of windowing objects. This
some other object’s service (which we will call the library may contain adapters, wrappers, and com-
publishe) that will issue periodic updates. As binators of graphical objects. For example, one of
shown in the Observer pattern implementation, thets operations could take a window and annotate it
publisher expects a functoid object taking no argu-with vertical scrollbars. The problem is that the
ments. This is easy to effect by adapting thegeneric library has no way of creating new objects
observer’s interface: for applications that may happen to use it. The
generic code does not share an inheritance hierar-
chy with any particular application, so it is impos-
sible to pass it concrete factory objects (as it cannot
(recall thatcurry2 is the currying function for 2- declare references to an abstract factory class).

argument functoids.) In the above, we used a con_—l_h_ bl b ved b Kind th ,
stant value (the current time) to specialize the! NS Problem can be solved by making the generic

update method so that it conforms to the required °P€rations be parametrically polymorphic and
interface. That is, all update events will get theenablmg type inference. For instance, we can write

same timestamp—one that indicates the subscrirf—l generic FC++ functoid that will annotate a win-
dow with a scrollbar:

void update(Time timestamp) { ... }

curry2(ptr_to_fun(&AnObserver::update),
this, current_time())



struct AddScrollbar { operation, prints the result of the invocation

ts’i:“gt'a;_eg“'ass W> (regardless of its type) and returns that same result:
uct Sig :
public FunType<W,ScrollWindow<W> *> struct Genericlnstrumentor {
{ template <class C, class A>
struct Sig :
template <class W> public FunType<C, A,
typename Sig<W>::ResultType C::template Sig<A>::ResultType>
operator() (const W& window) const { S
return
new ScrollWindow<W=>(window); template <class C, class A>
Sig<C,A>::ResultType
} add_scrollbar; operator() (const C& operation,

. . const A& argument ) const {
The above decorator functoid can be used with sev-  sjg<c A>::ResultType r =

eral different types of windows. For a window type operation(argument);
W the functoid’s return type will be a pointer to a cerr << *Resultis: " << r << end|;
decorated window typesScrollwindow<w> . (In return r;

fact, Scrollwindow can be a mixin, inheriting from oo _

. } generlc_lnstrumentor,

its parametemy)

Genericlnstrumentor exemplifies a special-pur-
ose functoid (it logs the results of calls to an error
tream) that can be generally applied (it can wrap

‘any one-argument function).

Since the functoid conforms to the FC++ conven-
tions, it can be manipulated using the standar
FC++ operators (e.g., composed with other func
toids, curried, etc.). Composition is particularly

useful, as it enables creating more complex generigiider. TheBuilder design pattern generalizes the
manipulators from simple ones. For instance, &onstruction process of conceptually similar com-
fu_nction to add both a scrollbar and a tiFI_e bar to aposite objects so that a generic process can be used
window can be expressed as a composition: to create the composite objects by repeatedly creat-
ing their parts. More concretely, the main roles in a
Builder pattern are those of a “Director” and a
instead of adding a new function to the interface of‘Builder”. The Director object holds a reference to

a generic library. Similarly, if theadd_titlebar an abstract Builder class and, thus, can be used
operation accepts one more argument (the windowvith multiple concrete Builders. Whenever the
title), the currying operation can be used (implic- Director needs to create a part of the composite

compose(add_titlebar, add_scrollbar)

itly in the example below): object, it calls the Builder. The Builder is responsi-
add_titlebar(*Application X Window?) glt()—*jefcc?[r aggregating the parts to form the entire

The previous examples showed how classes can be lication d in for th id
statically decorated, possibly with new abilities ”* €OMmon application domain for the Builder pat-

added to them. Nevertheless. a common kind of€™ is that of data interpretation. For instance, con-
decoration is pure wrapping, where the interface of'd€r an interpreter for HTML data. The main

the class does not change, but old operations ardructure of SUCh, an mterpreter is the same, regard-
extended with extra functionality. Using parametric/€SS Of whether it is used to display web pages, to

polymorphism one can write special-purpose poly_convert the HTML data into some other markup

morphic wrappers that are quite general. Thesé:gglljlage ofr wor?]-p:jocessmg ﬁ}rmat,hto_extract the
could also be written as C++ function templates, text from the data, etc. Thus, the interpreter

but if they are written as FC++ functoids, they can¢an be the Director in a Builder pattern. Then it can

be applied to polymorphic functoids and they CancaII the appropriate builders for each kind of docu-

themselves be manipulated by other functoids (Iike?"ent (helement It encourrmltersdm the HTML data (e.g.,
cury  and compose). Consider, for instance, an 0Nt change, paragraph end, text strings, etc.).

instrumentation functoid that calls a one-argument
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In the Builder pattern, the Director object often engine does not change in the middle of the inter-
implements a method of the form: pretation. Thus, the pattern is static—another rea-
son to prefer parametric polymorphism to

void construct(ObjCollection objs) { subtyping. This may result in improved perfor-

for all objects in objs {

if( objectis aA ) mance because the costs of dynamic dispatch are
builder->build_part_A(object); eliminated.
else if ( objectis_a B ) o . .
builder->build_part_B(object); The new organization also has other benefits. First,
the control flow of the pattern is simpler: the client
} never calls the Builder object directly. Instead of
} theget_result  call, the results are returned by the

(Pseudocode shown in italics.) Note that theconstuct — call made to the Director. Second,
build_part  method of thepuilder ~ objects returns Directors can now be more sophisticated: they can,

no result. Instead, the Builder object aggregates thir instance, declare temporary v_arial:gles of the
results of eachuild_part  operation and returns S&@Me type as the type of the Builder's product.
them through a method (we will call it These can be useful for caching previous products,

get result ). This method is called by a client Without cooperation from the Builder classes.
object (i.e.not the Director!). Additionally, Directors can now decide when the
data should be consumed by the client. For
A more natural organization would have the Direc-instance, the Observer pattern could be used: cli-
tor collect the products of building and return thements of an HTML interpreter could register a call-
to the client as a result of thenstruct  call. Inan  back object. The Director object (i.e., the
extreme case, theget result  method could be interpreter) can then invoke the callback whenever
unnecessary: the Director could keep all the statelata are to be consumed. Thus, ttwstruct
(i.e., the accumulated results of previousmethod may only be called once for an entire docu-
build_part  calls) and the Builder could be state- ment, but the client could be getting data after each
less. Nevertheless, this is impossible in the originaparagraph has been interpreted.

implementation of the pattern. The reason for

keeping the state in the Builders is that Directors”n0ther observation is that the Director class can
have no idea what the type of the result of thebe replaced by a functoid so that it can be manipu-
build_part method might be. Thus, Directors lated using general tools. Note that the Director

cannot declare any variables, containers, etc. baséd@Ss in the Builder pattern only supports a single
on the type of data returned by a Builder. Gammgnethod call. Thus, it can easily be made into a
et al. [8] write: “In the common case, the productsfunCto'd- Calling the functoid will be equivalent to

produced by the concrete builders differ so greatlyFalling construct  in the original pattern. The
in their representation that there is little to gain€tUrn type of the functoid depends on the type of

from giving different products a common parenth”der passed to it as an argument (instead of
class.” beingvoid ). An example functoid which integrates

these ideas is shown here:
This scenario (no common interface) is exactly one ,
where parametric polymorphism is appropriateStr‘:g:ng;?é“iL s B. class OC>
instead of subtype polymorphism. Using paramet- gt sig: public FunType<B,0C,
ric polymorphism, the Director class could infer Container<B::ResultType> >
the result types of individual Builders and define {;
state to keep their products. Of course, this requires
that the kind of Builder object used (e.g., an HTML  template<class B, class OC>

Container<B::ResultType> operator()

to PDF converter, an on-screen HTML browser, (B b, OC objs){
etc.) be fixed for each iteration of thenstruct Container<B::ResultType> c;
loop, shown earlier. This is, however, exactly how

the Builder pattern is used: the interpretation
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for all objects in objs { studied. Their conclusion was that meta-object pro-

if(_objectis aA ) tocols should be added to OO languages for better
els‘;'?d(d(b'bz'['j‘jgf[ag—:gbjec;»' pattern support. Thus, Alexandrescu’s implementa-
c.add(b.build_part_B(object)); tiqn is a gre_a_t_demonstration of the meta—prc_)gram-
ming capabilities of C++—the language’s ability to
} perform template computation on static properties
return c; can often be used instead of meta-object protocols.
} do_build; Géraud and Duret-Lutz [9] offer some arguments

for redesigning patterns to employ parametric
polymorphism. Thus, they propose that parametric
polymorphism be part of the “language” used to
Cspecify patterns. In contrast, our approach is to use
parametric polymorphism with type inference in
gle implementationof patterns. From an imple-
mentation standpoint, the Géraud and Duret-Lutz
suggestions are not novel: they have long been
5 Related Work used in C++ design pattern implementations. Fur-
thermore, the examples we offer in this paper are
We have referred to related work throughout themore advanced, employing type inference and
previous sections. Here we will selectively discussmanipulation of polymorphic functions.
only some particularly related work that we did not
get the chance to analyze earlier.

With this approach, the “director” functoid is in

full control of the data production and consump-
tion. The Director can be specialized via currying
to be applied to specific objects or to use a specifi
Builder. Two different Directors can even be com-
posed—the first building process can assemble
builder object for the second!

The Pizza language [18] integrates functional-like
support to Java. This support includes higher-order
There are several libraries that add functional profunctions, parametric polymorphism, datatype defi-
gramming features to C++. Some of themnition through patterns, and more. Pizza operates
[11][12][21] focus on front-end support (e.g., a @S a language extension and requires a pre-com-
lambda keyword) for creating functions on-the-fly. piler. Support for parametric polymorphism in Java
Other libraries [15][20] provide reusable function- has been a very active research topic (e.g.,
ality without any special front-end support. FC++ [1][5][17][23]). Type inference is not a part of
[16] is in this latter category: it provides mecha- most approaches, but is used at least in GJ [3].
nisms for expressing higher order and polymorphid\evertheless, due to the GJ translation technique
functions, but does not hide the imp|ementation(erasure) it does not seem possible to extract static
behind a more convenient front end. FC++ is dis-type information nested inside template parame-
tinguished from the rest by its full type system for ters. Thus, it is not possible to use the GJ type sys-
polymorphic functions, which enables creating andiem to pass polymorphic functions as arguments
manipulating polymorphic functions on-the-fly, and return them as results (in a type-safe way).

and by its support for indirect function references. It should be noted that Java inner classes [10] are

Dami’s currying mechanism for C/C++ [7] was €xcellent for implementing higher-order functions.
used to demonstrate the advantages of functiofner classes can access the state of their enclosing
specialization, but required a language extensiortlass, and, thus, can be used to expossures—

As we saw, the same benefits can be obtained iautomatic encapsulations of a function together
C++ without extending the language. with the data it acts on. Java inner classes can be

anonymous, allowing them to express anonymous
Alexandrescu [2] offers a mature C++ implementa-functions—a capability that is not straightforward
tion of the Abstract Factory pattern. His approachto emulate in C++. Many of our observations of
consists of a generic (i.e., polymorphic) AbstractSection 3 also apply to Java. In fact, the most com-

Factory class that gets parameterized statically bynon Java implementations of the Command and
all the possible products. It is worth noting that this

is the exact scenario that Baumgartner et al. [4]
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Observer design patterns use inner classes for the
commands/callbacks.

[6]

6 Conclusions

In this paper we examined how functional tech-
niques in general, and FC++ in particular, can be
applied to OO tasks, by illustrating the implemen-
tations of some common design patterns. out’]
examples from Section 3 are similar to others in the
literature, but, to our knowledge, our example pat-
tern implementations from Section 4 have not
appeared before, even in different contexts. Addi-
tionally, we are not aware of another mainstream/[8]
statically-typed OO language with the capabilities
of FC++ for manipulating polymorphic functions
and employing type inference.

9

Our implementations demonstrate the value o!
parametric polymorphism and type inference (even

in a rather primitive form) in a statically-typed
object-oriented language. By selectively using[lo]
parametric polymorphism with type inference and
higher-order functions, we can create simple, yet
general, implementations of patterns that are bot?11
efficient and type safe. ]
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