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Abstract

FC++ is a library for programming functionally in
C++. Compared to other C++ functional program-
ming libraries, FC++ is distinguished by its power-
ful type system which allows manipulating
parametrically polymorphic functions (e.g., pass-
ing them as arguments to other functions and
returning them as results).

In this paper, we show how FC++ can be used in
common OO programming tasks. We demonstrate
FC++ implementations of several common design
patterns (Adapter, Builder, Command, and more).
Compared to conventional C++ implementations
of these patterns, our implementations are either
simpler (in that fewer classes/dependencies are
needed), more efficient, or more type-safe (thanks
to parametric polymorphism and type-inference).

1  Introduction

Functional and object-oriented programming are
the most active fields of research in programming
languages and methodologies. Several pieces of
work have attempted to connect the two paradigms.
Among them are the Pizza language [18], extend-
ing Java, as well as libraries for programming func-
tionally in C++ [11][12][15][21]. FC++ [16] is one
such library, distinguished from all others by its
powerful type system: FC++ allows the program-
mer to define and fully manipulate parametrically
polymorphic functions. The conventional C++ way
of representing polymorphic functions is via func-
tion templates (e.g., see the C++ Standard Library
[20]). Nevertheless, function templates suffer
severe limitations—e.g., they cannot be passed as
parameters to other functions or returned as results.
FC++ polymorphic functions overcome these limi-
tations. This allows FC++ to re-implement

straightforwardly many common functional opera
tors (a large part of the Haskell Standard Prelu
[19]). The library is currently quite rich in func-
tionality and has an efficient implementation.

In a previous paper [16], we introduced FC++ an
its innovative type system, showed the componen
of the library, and demonstrated how its impleme
tation is more efficient than previous simila
attempts. In this paper we show how to leverag
the library to create simple, efficient, and saf
implementations of common OO design pattern
[8].

Certainly a lot has been written about languag
support for implementing design patterns (e.g
[4][6]), functional techniques in OO programming
etc. Some of the approaches in the literature a
even very close in philosophy to our work. Fo
instance:

• Alexandrescu [2] demonstrates how the met
programming capabilities of the C++ languag
can be used to yield elegant pattern impleme
tations.

• Kühne’s dissertation proposes several patter
inspired by functional programming [14].

• Using functional techniques (higher-orde
functions) to implement the Observer an
Command patterns is common—in fact, eve
standard practice in Java and Smalltalk.

• The benefits of polymorphic and higher-orde
functions have often been discussed in th
functional programming literature [22].

Therefore, by necessity, part of our material is n
conceptually novel. In particular, Section 3 show
that FC++ offers a rich framework for OO tasks
but similar results can be obtained with other lan
1
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guages or libraries (although, among C++
approaches, FC++ is arguably the most complete).

Section 4, however, shows new implementations of
common patterns by concentrating on some of the
more novel elements of FC++—mainly type infer-
ence and its ability to manipulate polymorphic
functions. We see how parametric polymorphism
can find its way into some design patterns, how
FC++ can handle such tasks, and how using para-
metric polymorphism results into more generic
code. [Note that we do not discuss improvements
in design patterns’ implementations by the mere
addition of parametric typing (e.g., C++ class tem-
plates) in a language. These are well understood
and are even discussed in [8], as implementation
suggestions.]

Although some C++ background is required for
much of the paper, we believe that the principles
are interesting even to non-C++ programmers. In
particular, the paper offers insights for language
designers and shows a platform where both sub-
type polymorphism and parametric polymorphism
with type inference are readily available as com-
plementary tools for problem solving.

2  Background: Functional Programming
with FC++

We begin by introducing FC++. We divide this
introduction into two parts. Section 2.1 gives an
overview of the FC++ library, from the perspective
of a user of the library components. Section 2.2
describes a few of the important implementation
techniques of the FC++ library. These will be
employed in Section 4 and are necessary for the
user who intends to write polymorphic functions
using FC++. The ability to manipulate polymor-
phic functions is what sets FC++ apart from all
other functional programming libraries in C++. For
a more complete introduction to FC++, the reader
should refer to [16].

2.1  FC++ Basics

In FC++, we express functions as instances of
classes that follow certain conventions. We call
such classesfunctoids. The key advantage to using
functoids (rather than C++ functions or function
templates) is that we can pass them as parameters

and return them as results—even if they are pol
morphic. There are two kinds of functoids:direct
and indirect. Direct functoids are the usual repre
sentation for functions in FC++. Direct functoids
can be either monomorphic or polymorphic. Ind
rect functoids, on the other hand, must always
monomorphic but can expressfirst-classfunctions.
That is, with indirect functoids, we can define var
ables that range over all functions with the sam
type signature. Thus, indirect functoids can b
viewed as indirect function references, much lik
C/C++ function pointers. In addition to direct and
indirect functoids, FC++ provides a number of use
ful operations for creating functoids, composin
them, specializing them, etc. We shall now discu
a few of the key components of FC++ in mor
detail.

Indirect functoidsare represented as theFunN fam-
ily of classes.FunNs specify function signatures via
template parameters;N is the number of arguments
For example,Fun2<int,char,string> is the type
of a two-argument indirect functoid which takes a
int and achar and returns astring . Note that the
first N template arguments comprise the argume
types of the function, and the last template arg
ment is the result type. Thus, the simplest kind
indirect functoid is aFun0<void> —a function that
takes no arguments and returns no result. (As
show in Section 3, this simplest functoid plays
significant role in a number of patterns.)

A common way to create indirect functoids is with
ptr_to_fun . ptr_to_fun transforms a normal
C++ function into a functoid. Here is a simple
example, which also demonstrates how indire
functoids can range over different functions:

int i_times( int x, in t y ) { return x*y;}
int i_plus( int x, int y ) { return x+y;}
...
Fun2<int,int,int> f;
f = ptr_to_fun(&i_times);
f(3,4); // returns 12
f = ptr_to_fun(&i_plus);
f(3,4); // returns 7

Note thatf ’s behavior depends on which functoid
it is bound to. This may seem reminiscent of OO
dynamic dispatch (where a method call depen
upon the dynamic type of the object that th
receiver is bound to), and rightly so! There is jus
2
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such a virtual method call buried inside the imple-
mentation of all indirect functoids.

Indirect functoids are more versatile than function
pointers: they employ automatically currying, they
can be bound to new function objects that are cre-
ated on-the-fly, and they exhibit a form of subtype
polymorphism (see [16]). What follows will dem-
onstrate some of these features, which have impor-
tant applications in Section 3 and Section 4.

Currying is a functional technique that allows us to
bind a subset of a function’s arguments to specific
values. For example, we can usecurry to bind the
first argument off to the value1, creating a new
one-argument function:

Fun1<int,int> inc = curry2(f,1);
inc(4); // returns 5 — i.e., i_plus(1,4)

(The2 in curry2 refers to the number of arguments
thatf expects.) In fact, FC++ also allows the curry-
ing to be implicit—when a functoid is called with
fewer actual arguments than it expects, it returns a
curried functoid. For instance, the previous exam-
ple can be written more simply as:

Fun1<int,int> inc = f(1);
inc(4); // returns 5 — i.e., i_plus(1,4)

Although this simpler form is what a typical FC++
user would write, we will avoid it in this paper, in
order to emphasize that currying is done through
polymorphic functions (e.g.,curry2 ) that manipu-
late other (possibly polymorphic) functions.

Functional compositionis easily expressed with
compose :

Fun1<int,int> inc2 = compose(inc,inc);
inc2(4); // returns 6 — i.e., inc(inc(4))

Currying and composition are among the powerful
functional techniques for building new functions
on-the-fly.

Unlike indirect functoids,direct functoidscan be
polymorphic. Consider the simple example of a
function to create astd::pair . (std::pair is the
template struct in C++ used to represent a pair of
values.) The direct functoidmk_pair makes a
std::pair  from its two parameters. For example,

mk_pair(3,’c’)

returns astd::pair structure whosefirst field is

the int 3 , and whosesecond field is thechar ‘c’ .
Indeed, the C++ standard defines a template fun
tion for the same purpose, which goes by the nam
std::make_pair . However, compared tomk_pair ,
std::make_pair suffers extreme limitations, by
virtue of being defined as a template function
Template functions cannot be passed as param
ters, which means we cannot use the function
techniques mentioned above (i.e., currying an
composition) on templates. Direct functoids avoi
these limitations. For example, we can say

curry2( mk_pair, 3 )

to return a new direct functoid which takes on
argument of any type T, and returns a
std::pair<int,T>  whosefirst  field is3.

2.2  Expressing Polymorphic FC++ Functoids

In the previous example, we demonstrated pass
a polymorphic functoid to a higher-order function
which returned a polymorphic result. How is thi
accomplished using C++? The trick in FC++ is t
use a struct with nested template members for bo
the actual function as well as an explicit represe
tation of the type signature of functoid, so that w
can exploit the language’s type inference of fun
tion arguments. Thus in FC++ we would defin
mk_pair  as:

struct MkPair {
template <class T, class U>
std::pair<T,U> operator()( T x, U y ) {

return std::pair<T,U>(x,y);
}
template <class T, class U>
struct Sig

: FunType<T,U,std::pair<T,U> > {};
} mk_pair;

The operator() member (the usual way to define
a function object in C++) is defined just as w
would expect. The key is theSig member. FC++
functoids all have memberstruct s namedSig

which encode their function signatures. TheseSig s
contain typedef s namedResultType , FirstArg-

Type , etc., according to FC++ library conventions
To ease the task of defining suchSig members, we
inherit the genericFunType class which defines the
typedefs;FunType follows the same conventions a
the indirect functoidFunN classes (the first few
template parameters are the argument types and
final template parameter is the result type).
3
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This encoding mechanism is the key that allows
FC++ to create higher-order functoids that can
directly manipulate polymorphic functoids. Specif-
ically, other functoids can determine what the
result type of a particular polymorphic functoid
would be, for given arguments.

To see how, consider the simple functoidapply ,
which applies a binary function to its arguments.
That is, apply(f,x,y) behaves just asf(x,y)

does. Iff is monomorphic, it is easy to implement
such a function in C++ (using techniques from the
STL [20]). However, suppose we want to use
apply on a polymorphic function likemk_pair —
how do we do it? In FC++, we just say:

struct Apply {
template <class F, class X, class Y>
typename F::Sig<X,Y>::ResultType
operator()( F f, X x, Y y ) {

return f(x,y);
}
template <class F, class X, class Y>
struct Sig : public FunType<F,X,Y,

typename F::Sig<X,Y>::ResultType> {};
} apply;

Note thatapply’s result type depends on both the
type of the functoid and the types of arguments it
receives;

F::Sig<X,Y>::ResultType

expresses this. Thus, for instance,
apply( mk_pair, 3, ‘c’ )

will return a
MakePair::Sig<int,char>::ResultType

which is just a typedef for
std::pair<int,char> .

Note thatapply also has its own nestedSig mem-
ber, which means thatapply itself could be manip-
ulated by other higher-order functions.

The process of inferring a function’s type from its
arguments is calledtype inference. Type inference
is automatic in modern functional languages (e.g.,
Haskell and ML). Type inference in C++ is semi-
automatic: the argument types can be inferred from
the actual arguments, but using these types to infer
the return type of a function has to be done “manu-
ally”. This is the role that theSig template mem-
bers play in FC++.

As a more realistic example of type inference, con-
sider thecompose function applied to two unary

functoids f and g of types F and G, respectively.
compose(f,g) returns a (possibly polymorphic)
direct functoid with the followingSig  member:

template <class T>
struct Sig : public FunType<

T,
typename F::Sig<

typename G::Sig<T>::ResultType>::
ResultType>

{};

That is (take a big breath), the return type ofcom-

pose(f,g) is a functoid of a single argument o
type T, whose return type is the same as that
functoid f when f ’s argument type is the same a
the return type of functoidg wheng’s argument is
of typeT.

Despite FC++’s abilities, it is not a complete func
tional language with polymorphism and type infer
ence. One of the main drawbacks is that variab
types have to be declared explicitly. Althoug
FC++ type inference eliminates the need for typin
intermediate results, if the final result of an FC+
expression needs to be stored, the variable sho
be explicitly typed. This restriction will hopefully
be removed with the addition of thetypeof key-
word in the next revision of the C++ standard.

Although the above examples may seem qu
complicated, there are not too many useful abstra
higher-order functions likecompose and they are
all already pre-defined in FC++. As a result, clien
are shielded from most of the complexity. Neve
theless, generic combinators likecurry and com-

pose owe their generality to this mechanism. Thu
most of the FC++ examples we shall see in Secti
4 are realizable only because of this unique featu
of our library.

3  Reusability with Object-Oriented and
Functional Patterns

Functional programming promotes identifying
pieces of functionality as just “functions” and
manipulating them using higher-order operation
on functions. These higher-order functions may b
specific to the domain of the application or the
may be quite general (like the currying and func
tion composition operations are). Several desi
patterns [8] follow a similar approach through th
4
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phism allows code that operates on a certain class
or interface to also work with specializations of the
class or interface. This is analogous to higher-order
functions: the holder of an object reference may
express a generic algorithm which is specialized
dynamically based on the value of the reference.
Encapsulating functionality and data as an object is
analogous to direct function manipulation. Other
code can operate abstractly on the object’s inter-
face (e.g., to adapt it by creating a wrapper object).

It has long been identified that functional tech-
niques can be used in the implementation of design
patterns. For instance, the Visitor pattern is often
considered a way to program functionally in OO
languages. (The interested reader should see [13]
and its references for a discussion of Visitor.) The
Smalltalk classMessageSend (and its variants, see
[3], p.254), the C++ Standard Library functors,
Alexandrescu’s framework ([2], Ch. 5), etc., are all
trying to capture the generic concept of a “func-
tion” and use it in the implementation of the Com-
mand or Observer pattern. Here we will briefly
review some of these well-known techniques, from
the FC++ standpoint, by using indirect functoids.

Command.The Command pattern turns requests
into objects, so that the requests can be passed,
stored, queued, and processed by an object which
knows nothing of either the action or the receiver
of the action. An example application of the pattern
is a menu widget. A pull-down menu, for instance,
must “do something” when an option is clicked;
Commandembodies the “something”. Command
objects support a single method (usually called
execute ). Any state that the method operates on
needs to be captured inside a command object.

The motivation for using the Command pattern is
twofold. First, holders of command objects (e.g.,
menu widgets) are oblivious to the exact function-
ality of these objects. This decoupling makes the
widgets reusable and configurable dynamically
(e.g., to create context-sensitive graphical menus).
Second, the commands themselves are decoupled
from the application interface and can be reused in
different situations (e.g., the same command can be
executed from both a pull-down menu and a tool-
bar).

Here is a brief example which illustrates how Com
mand might be employed in a word-processin
application:

class Command {
public:

virtual void execute()=0;
};

class CutCommand : public Command {
Document* d;

public:
CutCommand(Document* dd) : d(dd) {}
void execute() { d->cut(); }

};

class PasteCommand : public Command {
Document* d;

public:
PasteCommand(Document* dd) : d(dd) {}
void execute() { d->paste(); }

};

Document d;
...
Command* menu_actions[] = {

new CutCommand(&d),
new PasteCommand(&d),
...

};
...
menu_actions[choice]->execute();

The abstractCommandclass exists only to define the
interface for executing commands. Furthermor
theexecute() interface is just a call with no argu-
ments or results. In other words, the whole com
mand pattern simply represents a “functio
object”. From a functional programmer's perspe
tive, Commandis just a class wrapper for a “lambda
or “thunk”—an object-oriented counterpart of a
functional idiom. Indirect functoids in FC++ repre
sent such function-objects naturally: aFun0<void>

can be used to obviate the need for both th
abstractCommand class and its concrete subclasse

Document d;
...
Fun0<void> menu_actions[] = {

curry(ptr_to_fun(&Document::cut), &d),
curry(ptr_to_fun(&Document::paste), &d),
...

};
...
menu_actions[choice]();
5



is

ers
e
e
of
t is
a

e
st
-
to
e

ct
t
t

n.
u-
.

ther
n

lly

ds,
the
In this last code fragment, all of the classes that
comprised the original design pattern implementa-
tion have disappeared!Fun0<void> defines a natu-
ral interface for commands, and the concrete
instances can be created on-the-fly by making indi-
rect functoids out of the appropriate functionality,
currying arguments when necessary.

The previous example takes advantage of the fact
that ptr_to_fun can be used to create functoids
out of all kinds of function-like C++ entities. This
includes C++ functions, instance methods (which
are transformed into normal functions that take a
pointer to the receiver object as an extra first argu-
ment—as in the example), class (static) methods,
C++ Standard Library<functional> objects, etc.
This is an example of design inspired by the func-
tional paradigm: multiple distinct entities are uni-
fied as functions. The advantage of the unification
is that all such entities can be manipulated using
the same techniques, both application-specific and
generic.

Observer.The Observer pattern (a.k.a.Publish-
Subscribe) is used to register related objects
dynamically so that they can be notified when
another object’s state changes. The main partici-
pants of the pattern are asubject and multiple
observers. Observers register with the subject by
calling one of its methods (with the conventional
name attach ) and un-register similarly (via
detach ). The subject notifies observers of changes
in its state, by calling an observer method
(update ).

The implementation of the observer pattern con-
tains an abstractObserver class that all concrete
observer classes inherit. This interface has only the
update method, making it similar to just a single
function, used as a callback. In fact, the implemen-
tation of the Observer pattern can be viewed as a
special case of the Command pattern. Calling the
execute method of the command object is analo-
gous to calling theupdate method of an observer
object.

The FC++ solution strategy for the Observer pat-
tern is exactly the same as in Command. The Sub-
ject no longer cares about the type of its receivers
(i.e., whether they are subtypes of an abstract
Observer class). Instead, the interesting aspect of

the receivers—their ability to receive updates—
encapsulated as aFun0<void> . The abstract
Observer class disappears. The concrete observ
simply register themselves with the subject. W
will not show the complete code skeletons for th
Observer pattern, as they are just specializations
the code for Command. Nevertheless, one aspec
worth emphasizing. Consider the code below for
concrete observer:

class ConcreteObserver {
ConcreteSubject& subject;

public:
ConcreteObserver( ConcreteSubject& s )

: subject(s)
{

s.attach( curry( ptr_to_fun(
&ConcreteObserver::be_notified

), this ) );
}

void be_notified() {
cout << "new state is" <<

subject.get_state() << endl;
}

};

Note again howptr_to_fun is used to create a
direct functoid out of an instance method. Th
resulting functoid takes the receiver as its fir
parameter.curry is then used to bind this parame
ter. This approach frees observers from needing
conform to a particular interface. For instance, th
above concrete observer implementsbe_notified

instead of the standardupdate method, but it still
works fine. Indeed, we can turn an arbitrary obje
into an observer simply by making a functoid ou
of one of its method calls—the object need no
even be aware that it is participating in the patter
This decoupling is achieved by capturing the nat
ral abstraction of the domain: the function object

Summarizing, the reason thatFun0<void> can
replace the abstractObserver andCommandclasses
is because these classes serve no purpose o
than to create a common interface to a functio
call. In Command, the method is namedexecute() ,
and in Observer , it is called update() , but the
names of the methods (and classes) are rea
immaterial to the pattern. Indirect functoids in
FC++ obviate the need for these classes, metho
and names, by instead representing the core of
6
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interface: a function call which takes no argument
and returns nothing.

C++'s parameterization mechanism lets us extend
this notion to functions which take arguments and
return values. For example, consider an observer-
like scenario, where the notifier passes a value (for
instance, a string) to the observer'supdate method,
and theupdate returns a value (say, an integer).
This can be solved using the same strategy as
before, but using aFun1<string,int> instead of a
Fun0<void> . Again, the key is that the interface
between the participants in the patterns is ade-

quately represented by a single function signature;1

extra classes and methods (with fixed names) are
unnecessary to realize a solution.

Virtual Proxies. The Virtual Proxy pattern seeks
to put off expensive operations until they are actu-
ally needed. For example, a word-processor may
load a document which contains a number of
images. Since many of these images will reside on
pages of the document that are off-screen, it is not
necessary to actually load the entire image from
disk and render it unless the user of the application
actually scrolls to one of those pages. In [8], an
ImageProxy class supports the same interface as an
Image class, but postpones the work of loading the
image data until someone actually requests it.

In many functional programming languages, the
Virtual Proxy pattern is unnecessary. This is
because many functional languages employlazy
evaluation. This means that values are never com-
puted until they are actually used. This is in con-
trast to strict languages (like all mainstream OO
languages), where values are automatically com-
puted when they are created, regardless of whether
or not they are used.

Since C++ is strict, FC++ is also strict by default.
Nevertheless, a value of typeT can be made lazy by
wrapping the computation of that value in a
Fun0<T> . This is a common technique in strict
functional languages. It encapsulates a computa-

tion as a function and causes the computation
occur only when the function is actually called
(i.e., when the result is needed). For instance,
FC++ a callfoo(a,b) can be delayed by writing it
ascurry2(foo, a, b) . The latter expression will
return a 0-argument functoid that will perform th
original computation, but only when it is called
Thus, passing this functoid around enables it to
evaluated lazily.

We should mention that FC++ defines some mo
tools for conveniently expressing lazy computa
tions. First, the LazyPtrProxy class in FC++
works as a generic form of theImageProxy men-
tioned earlier. ALazyPtrProxy has the same inter-
face as a pointer to an object, but it does n
actually create the object until it is dereference
That is, LazyPtrProxy is a way to delayobject
construction(as opposed to method calls). Secon
FC++ contains an implementation of alazy list
data structure. This enables interesting solutions
some problems. For example, to compute the fi
N prime numbers, we might create an infinit
(lazy) list of all the primes, and then select just th
first N elements of that list. FC++ lazy lists are
compatible with the data structures in the C+
Standard Library and can be processed by a mu
tude of predefined FC++ functions.

4 Design Patterns and Parametric Polymor-
phism

In the previous section, we saw how several com
mon design patterns are related to functional pr
gramming patterns. All of our examples relied o
the use of higher order functions. Another trait o
modern functional languages (e.g., ML an
Haskell) is support for parametric polymorphism
with type inference. Type inference was discuss
in Section 2.2: it is the process of deducing th
return type of a function, given specific argument
In this section, we will examine how some desig
patterns can be improved if they employ parame
ric polymorphism with type inference and how
they can further benefit from the entire arsenal
FC++ techniques for manipulating these polymo
phic functions.(The discussion of this section
only relevant for statically typed OO language
like Java, Eiffel, or C++. The novelties of FC++ ar

1. A tuple of indirect functoids can be used if multiple func-
tion signatures are defined in an interface; the example in
[8] of Command used for do/undo could be realized in
FC++ with a std::pair<Fun0<void>,Fun0<void>> ,
for instance.
7
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in its type system—it has nothing new to offer to a
dynamically typed language, like Smalltalk.)

4.1  Parametric vs. Subtype Polymorphism

Design patterns are based on subtype polymor-
phism—the cornerstone of OO programming.
Parametric polymorphism, on the other hand, is not
commonly available in OO languages, and, even
when it is, its power is limited (e.g., there is no type
inference capability). FC++ adds this capability to
C++. It is interesting to ask when parametric poly-
morphism can be used in place of subtype poly-
morphism and what the benefits will be, especially
in the context of design patterns.

Parametric polymorphism is a static concept: it
occurs entirely at compile time. Thus, to use a
parametrically polymorphic operation, we need to
know the types of its arguments at each invocation
site of the operation (although the same operation
can be used with many different types of argu-
ments). In contrast, subtype polymorphism sup-
ports dynamic dispatch: the exact version of the
executed operation depends on the run-time type of
the object, which can be a subtype of its statically
known type.

Therefore a necessary condition for employing
parametric polymorphism is to statically know the
type of operands of the polymorphic operation at
each invocation site. When combined with type
inference, parametric polymorphism can be as con-
venient to use as subtype polymorphism and can be
advantageous for the following reasons:

• No common supertype is required. The issue of
having an actual common superclass or just
supporting the right method signature is simi-
lar to thenamed/structural subtypingdilemma.
All mainstream OO languages except Small-
talk use named subtyping: a type A needs to
declare that it is a subtype of B. In contrast, in
structural subtyping, a type A can be a subtype
of type B if it just implements the right method
signatures. The advantage of requiring a com-
mon superclass is that accidental conformance
is avoided. The disadvantage is that sometimes
it is not easy (or even possible) to change the
source code of a class to make it declare that it
is a subtype of another. For instance, it may be

impossible to modify pre-compiled code, or i
may be tedious to manipulate existing inheri
ance hierarchies, or the commonalities cann
be isolated due to language restrictions (e.
no multiple inheritance, no common interfac
signature). Even in languages like Java where
supertype of all types exists (theObject type),
problems arise with higher-order polymorphi
functions, like ourcurry operator. The prob-
lem is that anObject reference may be used to
point to any object, but it cannot be passed to
function that expects a reference of a specifi
(but unknown) type. Thus, implementing a
fully generic curry with subtype polymor-
phism is impossible.

• Type checking is static. With subtype polymor-
phism, errors can remain undetected until ru
time. Such errors arise when an object
assumed to be of a certain dynamic type but
not. Since the compiler can only check th
static types of objects, the error cannot b
detected at compile-time. In fact, for many o
the most powerful and general polymorphi
operations, subtype polymorphism is imposs
ble to use with any kind of type information
For instance, it would be impossible to imple
ment a genericcompose operator with subtype
polymorphism, unless all functions compose
are very weakly typed (e.g., functions from
Object s to Object s). The same is true with
most other higher-order polymorphic opera
tions (i.e., functions that manipulate othe
functions).

• Method dispatch is static. Despite the many
techniques developed for making dynamic di
patch more efficient, there is commonly a run
time performance cost, especially for hard-to
analyze languages like C++. Apart from th
direct cost of dynamic dispatch itself, there i
also an indirect cost due to lost optimizatio
opportunities (such as inlining).

4.2  Pattern Examples

Adapter. The Adapter pattern converts the inter
face of one class to that of another. The pattern
often useful when two separately developed cla
hierarchies follow the same design, but use diffe
ent names for methods. For example, one windo
toolkit might display objects by callingpaint() ,
8
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while another callsdraw() . Adapter provides a
way to adapt the interface of one to meet the con-
straints of the other.

Adaptation is remarkably simple when a functional
design is followed. Most useful kinds of method
adaptation can be implemented using the currying
and functoid composition operators of FC++, with-
out needing any special adapter classes. These
adaptation operators are very general and reusable.

Consider the Command or the Observer pattern. As
we saw, in an FC++ implementation there is no
need for abstractObserver or Command classes.
More interestingly, the concrete observer or com-
mands do not even need to support a common
interface—their existing methods can be converted
into functoids. Nevertheless, this requires that the
existing methods have the right type signature. For
instance, in our ConcreteObserver example,
above, thebe_notified method was used in place
of a conventionalupdate method, but both meth-
ods have the same signature: they take no argu-
ments and return no results. What if an existing
method hasalmostthe right signature, or if meth-
ods need to be combined to produce the right sig-
nature?

For an example, consider a class,AnObserver , that
defines a more general interface than what is
expected.AnObserver  may define a method:

void update(Time timestamp) { ... }

We would like to use this method to subscribe to
some other object’s service (which we will call the
publisher) that will issue periodic updates. As
shown in the Observer pattern implementation, the
publisher expects a functoid object taking no argu-
ments. This is easy to effect by adapting the
observer’s interface:

curry2(ptr_to_fun(&AnObserver::update),
this, current_time())

(recall thatcurry2 is the currying function for 2-
argument functoids.) In the above, we used a con-
stant value (the current time) to specialize the
update method so that it conforms to the required
interface. That is, all update events will get the
same timestamp—one that indicates the subscrip-

tion time instead of the update time. A bette
approach is:

compose(
curry2(ptr_to_fun(&AnObserver::update),

this),
ptr_to_fun(current_time))

In this example we combined currying with func
tion composition in order to specialize the inter
face. The resulting function takes no arguments b
uses global state (returned by thecurrent_time()

routine) as the value of the argument of theupdate

method. In this way, each update will be times
tamped with the value of the system clock at th
time of the update!

Other parametric polymorphism approaches (e.
the functional part of the C++ Standard Librar
[20], or Alexandrescu’s framework for functions
[2], Ch.5) support currying and composition fo
monomorphicfunctions. The previous examples
demonstrate the value of type inference, which
not unique to FC++. Nevertheless, FC++ als
extends type inference topolymorphic functions.
We will see examples of currying and compositio
of polymorphic operations in the implementation
of the next few patterns.

Decorator. TheDecoratorpattern is used to attach
additional responsibilities to an object. Althoug
this can happen dynamically, most of the commo
uses of the Decorator pattern can be handled st
cally. Consider, for instance, a generic library fo
the manipulation of windowing objects. This
library may contain adapters, wrappers, and com
binators of graphical objects. For example, one
its operations could take a window and annotate
with vertical scrollbars. The problem is that th
generic library has no way of creating new objec
for applications that may happen to use it. Th
generic code does not share an inheritance hier
chy with any particular application, so it is impos
sible to pass it concrete factory objects (as it cann
declare references to an abstract factory class).

This problem can be solved by making the gener
operations be parametrically polymorphic an
enabling type inference. For instance, we can wr
a generic FC++ functoid that will annotate a win
dow with a scrollbar:
9
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struct AddScrollbar {
template <class W>
struct Sig :

public FunType<W,ScrollWindow<W> *>
{};

template <class W>
typename Sig<W>::ResultType
operator() (const W& window) const {

return
new ScrollWindow<W>(window);

}
} add_scrollbar;

The above decorator functoid can be used with sev-
eral different types of windows. For a window type
W, the functoid’s return type will be a pointer to a
decorated window type:ScrollWindow<W> . (In
fact,ScrollWindow can be a mixin, inheriting from
its parameter,W.)

Since the functoid conforms to the FC++ conven-
tions, it can be manipulated using the standard
FC++ operators (e.g., composed with other func-
toids, curried, etc.). Composition is particularly
useful, as it enables creating more complex generic
manipulators from simple ones. For instance, a
function to add both a scrollbar and a title bar to a
window can be expressed as a composition:

compose(add_titlebar, add_scrollbar)

instead of adding a new function to the interface of
a generic library. Similarly, if theadd_titlebar

operation accepts one more argument (the window
title), the currying operation can be used (implic-
itly in the example below):

add_titlebar(“Application X Window”)

The previous examples showed how classes can be
statically decorated, possibly with new abilities
added to them. Nevertheless, a common kind of
decoration is pure wrapping, where the interface of
the class does not change, but old operations are
extended with extra functionality. Using parametric
polymorphism one can write special-purpose poly-
morphic wrappers that are quite general. These
could also be written as C++ function templates,
but if they are written as FC++ functoids, they can
be applied to polymorphic functoids and they can
themselves be manipulated by other functoids (like
curry and compose ). Consider, for instance, an
instrumentation functoid that calls a one-argument

operation, prints the result of the invocatio
(regardless of its type) and returns that same res

struct GenericInstrumentor {
template <class C, class A>
struct Sig :

public FunType<C, A,
C::template Sig<A>::ResultType>

{};

template <class C, class A>
Sig<C,A>::ResultType
operator() (const C& operation,

const A& argument ) const {
Sig<C,A>::ResultType r =

operation(argument);
cerr << “Result is: ” << r << endl;
return r;

}
} generic_instrumentor;

GenericInstrumentor exemplifies a special-pur-
pose functoid (it logs the results of calls to an erro
stream) that can be generally applied (it can wra
any one-argument function).

Builder. TheBuilderdesign pattern generalizes th
construction process of conceptually similar com
posite objects so that a generic process can be u
to create the composite objects by repeatedly cre
ing their parts. More concretely, the main roles in
Builder pattern are those of a “Director” and
“Builder”. The Director object holds a reference t
an abstract Builder class and, thus, can be us
with multiple concrete Builders. Whenever th
Director needs to create a part of the compos
object, it calls the Builder. The Builder is respons
ble for aggregating the parts to form the entir
object.

A common application domain for the Builder pat
tern is that of data interpretation. For instance, co
sider an interpreter for HTML data. The main
structure of such an interpreter is the same, rega
less of whether it is used to display web pages,
convert the HTML data into some other marku
language or word-processing format, to extract t
ASCII text from the data, etc. Thus, the interprete
can be the Director in a Builder pattern. Then it ca
call the appropriate builders for each kind of docu
ment element it encounters in the HTML data (e.g
font change, paragraph end, text strings, etc.).
10
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In the Builder pattern, the Director object often
implements a method of the form:

void construct(ObjCollection objs) {
for all objects in objs {

if ( object is_a A )
builder->build_part_A(object);

else if ( object is_a B )
builder->build_part_B(object);

...
}

}

(Pseudocode shown in italics.) Note that the
build_part method of thebuilder objects returns
no result. Instead, the Builder object aggregates the
results of eachbuild_part operation and returns
them through a method (we will call it
get_result ). This method is called by a client
object (i.e.,not the Director!).

A more natural organization would have the Direc-
tor collect the products of building and return them
to the client as a result of theconstruct call. In an
extreme case, theget_result method could be
unnecessary: the Director could keep all the state
(i.e., the accumulated results of previous
build_part calls) and the Builder could be state-
less. Nevertheless, this is impossible in the original
implementation of the pattern. The reason for
keeping the state in the Builders is that Directors
have no idea what the type of the result of the
build_part method might be. Thus, Directors
cannot declare any variables, containers, etc. based
on the type of data returned by a Builder. Gamma
et al. [8] write: “In the common case, the products
produced by the concrete builders differ so greatly
in their representation that there is little to gain
from giving different products a common parent
class.”

This scenario (no common interface) is exactly one
where parametric polymorphism is appropriate
instead of subtype polymorphism. Using paramet-
ric polymorphism, the Director class could infer
the result types of individual Builders and define
state to keep their products. Of course, this requires
that the kind of Builder object used (e.g., an HTML
to PDF converter, an on-screen HTML browser,
etc.) be fixed for each iteration of theconstruct

loop, shown earlier. This is, however, exactly how
the Builder pattern is used: the interpretation

engine does not change in the middle of the inte
pretation. Thus, the pattern is static—another re
son to prefer parametric polymorphism t
subtyping. This may result in improved perfor
mance because the costs of dynamic dispatch
eliminated.

The new organization also has other benefits. Fir
the control flow of the pattern is simpler: the clien
never calls the Builder object directly. Instead o
theget_result call, the results are returned by th
construct call made to the Director. Second
Directors can now be more sophisticated: they ca
for instance, declare temporary variables of th
same type as the type of the Builder’s produc
These can be useful for caching previous produc
without cooperation from the Builder classes
Additionally, Directors can now decide when th
data should be consumed by the client. F
instance, the Observer pattern could be used: c
ents of an HTML interpreter could register a cal
back object. The Director object (i.e., the
interpreter) can then invoke the callback whenev
data are to be consumed. Thus, theconstruct

method may only be called once for an entire doc
ment, but the client could be getting data after ea
paragraph has been interpreted.

Another observation is that the Director class ca
be replaced by a functoid so that it can be manip
lated using general tools. Note that the Direct
class in the Builder pattern only supports a sing
method call. Thus, it can easily be made into
functoid. Calling the functoid will be equivalent to
calling construct in the original pattern. The
return type of the functoid depends on the type
builder passed to it as an argument (instead
beingvoid ). An example functoid which integrates
these ideas is shown here:

struct DoBuild {
template <class B, class OC>
struct Sig: public FunType<B,OC,

Container<B::ResultType> >
{};

template<class B, class OC>
Container<B::ResultType> operator()
(B b, OC objs){

Container<B::ResultType> c;
11
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for all objects in objs {
if( object is_a A )

c.add(b.build_part_A(object));
else if ( object is_a B )

c.add(b.build_part_B(object));
...

}
return c;

}
} do_build;

With this approach, the “director” functoid is in
full control of the data production and consump-
tion. The Director can be specialized via currying
to be applied to specific objects or to use a specific
Builder. Two different Directors can even be com-
posed—the first building process can assemble a
builder object for the second!

5  Related Work

We have referred to related work throughout the
previous sections. Here we will selectively discuss
only some particularly related work that we did not
get the chance to analyze earlier.

There are several libraries that add functional pro-
gramming features to C++. Some of them
[11][12][21] focus on front-end support (e.g., a
lambda keyword) for creating functions on-the-fly.
Other libraries [15][20] provide reusable function-
ality without any special front-end support. FC++
[16] is in this latter category: it provides mecha-
nisms for expressing higher order and polymorphic
functions, but does not hide the implementation
behind a more convenient front end. FC++ is dis-
tinguished from the rest by its full type system for
polymorphic functions, which enables creating and
manipulating polymorphic functions on-the-fly,
and by its support for indirect function references.

Dami’s currying mechanism for C/C++ [7] was
used to demonstrate the advantages of function
specialization, but required a language extension.
As we saw, the same benefits can be obtained in
C++ without extending the language.

Alexandrescu [2] offers a mature C++ implementa-
tion of the Abstract Factory pattern. His approach
consists of a generic (i.e., polymorphic) Abstract
Factory class that gets parameterized statically by
all the possible products. It is worth noting that this
is the exact scenario that Baumgartner et al. [4]

studied. Their conclusion was that meta-object pr
tocols should be added to OO languages for bet
pattern support. Thus, Alexandrescu’s implement
tion is a great demonstration of the meta-program
ming capabilities of C++—the language’s ability to
perform template computation on static propertie
can often be used instead of meta-object protoco

Géraud and Duret-Lutz [9] offer some argumen
for redesigning patterns to employ parametr
polymorphism. Thus, they propose that paramet
polymorphism be part of the “language” used t
specify patterns. In contrast, our approach is to u
parametric polymorphism with type inference i
the implementationof patterns. From an imple-
mentation standpoint, the Géraud and Duret-Lu
suggestions are not novel: they have long be
used in C++ design pattern implementations. Fu
thermore, the examples we offer in this paper a
more advanced, employing type inference an
manipulation of polymorphic functions.

The Pizza language [18] integrates functional-lik
support to Java. This support includes higher-ord
functions, parametric polymorphism, datatype de
nition through patterns, and more. Pizza operat
as a language extension and requires a pre-co
piler. Support for parametric polymorphism in Jav
has been a very active research topic (e.
[1][5][17][23]). Type inference is not a part of
most approaches, but is used at least in GJ [
Nevertheless, due to the GJ translation techniq
(erasure) it does not seem possible to extract sta
type information nested inside template param
ters. Thus, it is not possible to use the GJ type sy
tem to pass polymorphic functions as argumen
and return them as results (in a type-safe way).

It should be noted that Java inner classes [10] a
excellent for implementing higher-order functions
Inner classes can access the state of their enclos
class, and, thus, can be used to expressclosures—
automatic encapsulations of a function togeth
with the data it acts on. Java inner classes can
anonymous, allowing them to express anonymo
functions—a capability that is not straightforwar
to emulate in C++. Many of our observations o
Section 3 also apply to Java. In fact, the most com
mon Java implementations of the Command a
12
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Observer design patterns use inner classes for the
commands/callbacks.

6  Conclusions

In this paper we examined how functional tech-
niques in general, and FC++ in particular, can be
applied to OO tasks, by illustrating the implemen-
tations of some common design patterns. Our
examples from Section 3 are similar to others in the
literature, but, to our knowledge, our example pat-
tern implementations from Section 4 have not
appeared before, even in different contexts. Addi-
tionally, we are not aware of another mainstream,
statically-typed OO language with the capabilities
of FC++ for manipulating polymorphic functions
and employing type inference.

Our implementations demonstrate the value of
parametric polymorphism and type inference (even
in a rather primitive form) in a statically-typed
object-oriented language. By selectively using
parametric polymorphism with type inference and
higher-order functions, we can create simple, yet
general, implementations of patterns that are both
efficient and type safe.
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