A Personal Outlook on Generator Research
(A Position Paper)

Yannis Smaragdakis

College of Computing, Georgia Institute of Technology
Atlanta, GA 30332, USA
yannis@cc.gatech.edu

http://www.cc.gatech.edu/ yannis/

Abstract. If we want domain-specific program generation to form the
basis of a strong, long-lived research community, we need to recognize
what its potential impact might be and why the promise has not been
fulfilled so far. In this chapter, I review my past work on generators and
I present a collection of personal opinions on the symptoms convincing
me that there is room for improvement in the generators research com-
munity. Then I analyze the causes of these symptoms, some of which are
inherent, while some others can be overcome. A major cause of difficulty
is the inherent domain-specificity of generators that often makes research
work be less valuable to other generator writers who are unfamiliar with
the domain. I propose directions on what should be considered promis-
ing research for the community, what I believe are useful principles for
generator design, and what community building measures we can take.

1 Introduction

This chapter is a personal account of my past work and current thoughts on
research in software generators and the generators research community.

As an opinion piece, this chapter contains several unsubstantiated claims and
(hopefully) many opinions the reader will find provocative. It also makes liberal
use of the first person singular. At the same time, whenever I use the first person
plural, I try to not have it mean the “royal 'we’ ” but instead to speak on behalf
of the community of generators researchers.

There are two ways to view the material of this chapter. The first is as a
threat-analysis for the area of domain-specific program generation. Indeed, a
lot of the discussion is explicitly critical. For instance, although I believe that
domain-specific program generation has tremendous potential, I also feel that the
domain-specificity of the area can limit the potential for knowledge transfer and
deep research. Another way to view this chapter, however, is as an opportunity-
analysis: based on a critical view of the area, I try to explicitly identify the
directions along which both research and community-building in software gen-
erators can have the maximum impact.

I will begin with a description of my background in generators research. This
is useful to the reader mainly as a point of reference for my angle and outlook.

2 My Work in Generators

A large part of my past and present research is related to software generators.
I have worked on two different transformation systems (Intentional Program-
ming and JTS), on the DiSTiL generator, on the Generation Scoping facility, on
C++ Template libraries and components, and on the GOTECH framework for
generation of EJB code.

2.1 Transformation Systems

Transformation systems are infrastructure for generators. They are usually tools
for doing meta-programming: writing programs that manipulate other programs.
Transformation systems typically include a language extension facility (e.g., a
macro language and ways to add concrete syntax), and a transformation engine:
a way to specify manipulations of syntax entities and semantic information.

I have worked on two different transformation systems: Intentional Program-
ming (IP) and JTS. IP [1,11,12] was a long term project at Microsoft Research
that intended to provide a complete and mature language extensibility environ-
ment. IP’s goal was to accommodate an ecology of transformations that would
be provided by different sources and would not need to be designed to cooperate.
(The term “ecology” refers to a biological metaphor that has transformations or
language features be the analogue of genes and programming languages be the
analogue of organisms, through which transformations propagate and evolution
takes place.) As part of my work on IP, I implemented code template opera-
tors (a quote/unquote facility for manipulating program fragments as data) and
a pattern language for transformations. Two interesting results of my IP work
were the generation scoping facility and the DiSTiL generator, both of which I
describe later in more detail.

JTS [3] is an extensible Java parser and syntax analyzer. It enables syntactic
extensions to the language and arbitrary syntax tree transformations. JTS pro-
vides a standard programmatic interface for manipulating syntax trees, but also
offers a full pattern language and a macro facility. JTS has served mostly as an
experimentation platform for language extension ideas (e.g., additions of tem-
plates and module-like constructs in Java [17]) and domain-specific languages
(e.g., the P3 generator [4]).

2.2 DiSTiL

The DiSTiL domain specific language [12] is an extension to C that allows the
user to compose data structure components to form very efficient combinations
of data structures. The language has a declarative syntax for specifying data
structure operations: the user can define traversals over data through a pred-
icate that the data need to satisfy. The DiSTiL generator can then perform
optimizations based on the static parts of the predicate. Optimizations include
the choice of an appropriate data structure, if multiple are available over the
same data.

The following (slightly simplified) DiSTiL source code fragment shows the
main elements of the language, including the data structure definition (typeql
and contl definitions), cursor predicate (cursl definition) and traversal key-
words (foreach, ref).

struct phonebook_record {...}; // C definition

typeq (phonebook_record, Hash(Tree(Malloc(Transient)))) typeql;

Container (typeql, (Hash (phone), Tree (name))) contl;

Cursor (contl, name > "Sm" && name < "Sn", ascending(name))
cursl; // DiSTiL definitions

foreach(cursil)
. ref(cursl, name)
// DiSTil. operations mixed with C code

This example code shows a data structure organizing the same data in two
ways: using a hash table (the Hash component in the above code) on the “phone”
field and using a red-black tree (Tree) on the “name” field of the data records.
The data are stored transiently in memory (Transient) and allocated dynam-
ically on the heap (Malloc). The cursor shown in the example code is defined
using a predicate on the “name” field. Therefore, DiSTiL will generate efficient
code for all uses of this cursor by using the red-black tree structure. Should the
cursor predicate or the data structure specification change in the future, DiSTiL
will generate efficient code for the new requirements without needing to change
the data structure traversal code.

2.3 Generation Scoping

Consider the generation of code using code template operators quote (‘) and
unquote ($). The generator code may contain, for instance, the expression:

‘(if ((fp = fopen($filename, "r")) == NULL)...)

The question becomes, what are the bindings of free variables in this expres-
sion? What is the meaning of fp or even fopen? This is the scoping problem
for generated code and it has been studied extensively in the hygienic macros
literature [5, 8] for the case of pattern-based generation. Generation scoping [16]
is a mechanism that gives a similar solution for the case of programmatic (i.e.,
not pattern-based) generation. The mechanism adds a new type, Env, and a new
keyword, environment, that takes an expression of type Env as an argument.
environment works in conjunction with quote and unquote—all generated code
fragments under an environment (e) scope have their variable declarations in-
serted in e and their identifiers bound to variables in e. For example, the following
code fragment demonstrates the generation scoping syntax:

Env e = new Env(parent);

environment (e)
return ‘{ FILE xfp; ... }

environment (e)
return ‘{ if ((fp = fopen($filename, "r")) == NULL)
FatalError (FILE_OPEN_ERROR) ;

}

In the above example, a new environment, e, gets created. Then, a variable,
fp, is added to it, just by virtue of quoting its declaration under e. Any sub-
sequent code generated under environment e will have its identifiers bound to
variables in e. For instance, the fp identifier in the last quoted code fragment will
be bound to the fp variable generated earlier. This binding is ensured, even if
there are multiple fps visible in the same lexical scope in the generated program,
by consistently renaming the fps in the generated code to a unique name.

The advantage of generation scoping is that it ensures that scoping is what
the generator programmer intends. The scoping of an identifier in a generated
fragment is not determined merely by its location in the final generated program.
This allows the arbitrary mixing and matching of generated code fragments
without worrying about name conflicts. The sophisticated part of the generation
scoping implementation is that it needs to recognize what parts of the generated
code correspond to binding instances (e.g., the declaration FILE *fp) and pro-
duce code that adds them in the right scoping environment maintained during
generation. Environments can be organized hierarchically—in the above exam-
ple, environment e is a child of environment parent. An identifier is looked up in
the current environment, then this environment’s parent, etc. Hierarchies of en-
vironments allow generation scoping to mimic a variety of scoping arrangements
(e.g., lexical scoping but also ad hoc namespaces) in the generated program.

Generation scoping simplified significantly the implementation of DiSTiL.
DiSTiL is a component-based generator—the generated code is produced by
putting together a large numbers of smaller code fragments. Thus, the same
code is often generated in the same lexical scope but with different intended
identifier bindings. This was made significantly easier by generation scoping, as
each generation-time component only needed to maintain a single environment,
regardless of how the code of all components ended up being weaved together.

2.4 C+H+ Templates Work

Advanced work with C++ templates is often closely related to generators. C++
templates offer a Turing-complete compile-time sub-language that can be used
to perform complex meta-programming [6]. In combination with the C++ syn-
tactic extensibility features, like operator overloading, C++ templates offer an
extensible language environment where many domain-specific constructs can be

added. In fact, several useful implementations of domain-specific languages [19],
especially for scientific computing, have been implemented exclusively as C++
template libraries. These domain-specific languages/libraries perform complex
compile-time optimizations, akin to those performed by a high-performance For-
tran compiler.

Much of my work involves C++ templates although often these templates are
not used for language extensibility. Specifically, I have proposed the concept of
a mizin layer [13,14,17]. Mixin layers are large-scale components, implemented
using a combination of inheritance and parameterization. A mixin layer contains
multiple classes, all of which have a yet-unknown superclass. What makes mixin
layers convenient is that all their component classes are simultaneously instan-
tiated as soon as a mixin layer is composed with another layer. Mixin layers can
have a C++ form as simple as the following:

template <class S> class T : public S {
class I1: public S::I1 {...};
class I2: public S::I2 {...};
class I3: public S::I3 {...};

I

That is, a mixin layer in C++ is a class template, T, that inherits from its
template parameter, S, while it contains nested classes that inherit from the
corresponding nested classes of S. In this way, a mixin layer can inherit entire
classes from other layers, while by composing layers (e.g., T<A>) the programmer
can form inheritance hierarchies for a whole set of inter-related classes (like
T<A>::I1, T<A>::I2, etc.).

My C++ templates work also includes FC++ [9,10]: a library for functional
programming in C++. FC++ offers much of the convenience of programming in
Haskell without needing to extend the C++ language. Although the novelty and
value of FC++ is mostly in its type system, the latest FC++ versions make use
of C++ template meta-programming to also extend C++ with a sub-language
for expressing lambdas and various monad-related syntactic conveniences (e.g.,
comprehensions).

2.5 GOTECH

The GOTECH system is a modular generator that transforms plain Java classes
into Enterprise Java Beans—i.e., classes conforming to a complex specification
(J2EE) for supporting distribution in a server-side setting. The purpose of the
transformation is to make these classes accessible from remote machines, i.e.,
to turn local communication into distributed. In GOTECH, the programmer
marks existing classes with unobtrusive annotations (inside Java comments).
The annotations contain simple settings, such as:

VAL
*Q@ejb:bean name = "SimpleClass"

type = "stateless"
* jndi-name = "ejb/test/simple"
* semantics = "by-copy"

*/

From such information, the generator creates several pieces of Java code and
meta-data conforming to the specifications for Enterprise Java Beans. These in-
clude remote and local interfaces, a deployment descriptor (meta-data describing
how the code is to be deployed), etc. Furthermore, all clients of the annotated
class are modified to now make remote calls to the new form of the class. The
modifications are done elegantly by producing code in the Aspect]J language [7]
that takes care of performing the necessary redirection. (AspectJ is a system
that allows the separate specification of dispersed parts of an application’s code
and the subsequent composition of these parts with the main code body.) As a
result, GOTECH is a modular, template-based generator that is easy to change,
even for end-users.

2.6 Current Work

Some of my yet unpublished work is also relevant to generators research and
language extensibility. In particular, the MAJ system is a meta-programming
extension to Java for creating AspectJ programs. Specifically, MAJ adds to Java
code template operators (a quote and unquote constructs) for structured (i.e.,
statically syntax-checked) generation of AspectJ code. The application value of
MAJ is that it allows the easy creation of generators by just producing AspectJ
programs that will transform existing applications. In general, I believe that
using aspect-oriented technologies, like AspectJ, as a back-end for generators is
a very promising approach.

Another one of my current projects is LC++. LC++ extends C++ with a full
logic sub-language, closely resembling Prolog. The extension is implemented us-
ing template meta-programming, i.e., as a regular C++ library without needing
any modifications to existing compilers.

3 What Are the Difficulties of Generator Research?

After describing my past and current work in generators, I take off my researcher
hat and put on my GPCE’03 PC co-Chair hat. The GPCE conference (Genera-
tive Programming and Component Engineering) is trying to build a community
of people interested in work in program generation.! Clearly, I advertise GPCE

! The name also includes “Component Engineering” which is a closely related area.
The main element behind both generators and component engineering is the domain-
specificity of the approaches. Some domains are simple enough that after the domain
analysis is performed there is no need for a full-blown generator or language. Instead,
an appropriate collection of components and a straightforward composition mecha-
nism are a powerful enough implementation technique.

in this chapter, but at the same time I am hoping to outline the reasons why I
think GPCE is important and why the generators community needs something
like what I imagine GPCE becoming. All of my observations concern not just
GPCE but the overall generators community. At the same time, all opinions
are, of course, only mine and not necessarily shared among GPCE organizers.
When I speak of “generators conferences”, the ones I have in mind are ICSR
(the International Conference on Software Reuse), GPCE, as well as the older
events DSL (the Domain-Specific Languages conference), SAIG (the workshop
on Semantics, Applications and Implementation of Program Generation), and
GCSE (the Generative and Component-based Software Engineering conference).
Of course, much of the work on generators also appears in broader conferences
(e.g., in the Object-Oriented Programming or Automated Software Engineering
communities) and my observations also apply to the generators-related parts of
these venues.

Is there something wrong with the current state of research in generators or
the current state of the generators scientific community? One can certainly argue
that the community is alive and well, good research is being produced, and one
cannot improve research quality with strategic decisions anyway. Nevertheless,
I will argue that there are some symptoms that suggest we can do a lot better.
These symptoms are to some extent shared by our neighboring and surrounding
research communities—those of object-oriented and functional programming, as
well as the broader Programming Languages and Software Engineering com-
munities. I do believe, however, that some of the symptoms outlined below are
unique and the ones that are shared are even more pronounced in the generators
community. By necessity, my comments on community building are specific to
current circumstances, but I hope that my comments on the inherent difficulties
of generator research are general.

3.1 Symptoms

Relying on Other Communities. The generators community is derivative, to
a larger extent than it should be. This means that we often expect technical
solutions from the outside. The solution of fundamental problems that have
direct impact to the generators community is often not even considered our
responsibility. Perhaps this is an unfair characterization, but I often get the
impression that we delegate important conceptual problems to the programming
languages or systems communities. A lot of the interactions between members of
the generators community and researchers in, say, programming languages (but
outside generators) take the form of “what cool things did you guys invent lately
that we can use in generators?”.

Although T acknowledge that my symptom description is vague, I did want
to state this separately from the next symptom, which may be a cause as well
as an expression of this one.

Low Prestige. The generators community is lacking in research prestige. Specific
indications include the lack of a prestigious, high-selectivity publication outlet,

and the corresponding shortage of people who have built a career entirely on
doing generators work. Most of us prefer to publish our best results elsewhere.
Of course, this is a chicken-and-egg problem: if the publication outlets are not
prestigious, people will not submit their best papers. But if people do not submit
their best papers, the publication outlets will remain non-prestigious. I don’t
know if GPCE will overcome this obstacle, but I think it has a chance to do
so. GPCE integrates both people who are interested in generators applications
(the Software Engineering side) and people who work on basic mechanisms for
generators (the Programming Languages side). GPCE is a research conference:
the results that it accepts have to be new contributions to knowledge and not
straightforward applications of existing knowledge. Nevertheless, research can be
both scientific research (i.e., research based on analysis) and engineering research
(i-e., research based on synthesis). Both kinds of work are valuable to GPCE. The
hope is that by bringing together the Software Engineering and the Programming
Languages part of the community, the result will be a community with both
strength in numbers but also a lively, intellectually stimulating exchange of ideas.

Poor Definition. Another symptom suggesting that the generators community
could improve is the vagueness of the limits of the community. Most research
communities are dynamic, but I get the impression that we are a little more
dynamic than the average. The generators conferences get a lot of non-repeat
customers. Often, papers are considered relevant under the reasoning of “XYZ
could be thought of as a generator”. Where do we draw the line? Every commu-
nity has links to its neighboring communities, but at the same time a community
is defined by the specific problems they are primarily interested in or the ap-
proach they take to solutions.

Limited Impact. A final, and possibly the most important, symptom of the
problems of our community has to do with the impact we have had in prac-
tice. There are hundreds of nice domain-specific languages out there. There are
several program generation tools. A well-known software engineering researcher
recently told me (upon finding out I work on generators) “You guys begin to
have impact! I have seen some very nice domain-specific languages for XYZ.” I
was embarrassed to admit that I could not in good conscience claim any credit.
Can we really claim such an impact? Or were all these useful tools developed in
complete isolation from research in software generators? If we do claim impact,
is it for ideas, for tools, or for methodologies? In the end, when a new generator
is designed, domain experts are indispensable. Does the same hold for research
results?

One can argue that this symptom is shared with the programming languages
research community. Nevertheless, I believe the problem is worse for us. The de-
signers of new general purpose programming languages (e.g., Java, C#, Python,
etc.) may not have known the latest related research for every aspect of their
design. Nevertheless, they have at least read some of the research results in lan-
guage design. In contrast, many people develop useful domain-specific languages
without ever having read a single research paper on generators.

3.2 Causes?

If we agree that the above observations are indeed symptoms of a problem,
then what is the cause of that problem? Put differently, what are the general
obstacles to having a fruitful and impactful research community in domain-
specific program generation? I believe there are two main causes of many of the
difficulties encountered by the generators community.

1. Domain-specificity is inherent to generators: most of the value of a generator
is in capturing the domain abstractions. But research is all about transmis-
sion of knowledge. If the value is domain-specific, what is there to transmit
to others?

2. What is generators work anyway? There is no established common body of
knowledge for the area of generators. Consequently, it is not clear what are
the big research problems and what should be the next research goals.

In the next two sections, I try to discuss in more detail these two causes.
By doing this, I also identify what I consider promising approaches to domain-
specific program generation research.

4 Domain-Specificity

4.1 Lessons That Transcend Domains

In generators conferences, one finds several papers that tell a similarly-structured
tale: “We made this wonderful generator for domain XYZ. We used these tools.”
Although this paper structure can certainly be very valuable, it often degenerates
into a “here’s what I did last summer” paper. A domain-specific implementation
may be valuable to other domain experts, but the question is, what is the value
to other generators researchers and developers who are not domain experts? Are
the authors only providing an example of the success of generators but without
offering any real research benefit to others? If so, isn’t this really not a research
community but a birds-of-a-feather gathering?

Indeed, I believe we need to be very vigilant in judging technical contributions
according to the value they offer to other researchers. In doing this, we could
establish some guidelines about what we expect to see in a good domain-specific
paper. Do we want an explicit “lessons learned” section? Do we want authors
to outline what part of their expertise is domain-independent? Do we want an
analysis of the difficulties of the domain, in a form that will be useful to future
generators’ implementors for the same domain? I believe it is worth selecting a
few good domain-specific papers and using them as examples of what we would
like future authors to address.

4.2 Domain-Independent Research: Infrastructure

In my view, a very promising direction of generators research is the design and
development of infrastructure: language abstractions and type system support,

transformation systems, notations for transformations, etc. A lot of generators
research, both on the programming languages and the software engineering side,
is concerned with generator /meta-programming infrastructure. Infrastructure is
the domain-independent part of generators research. As such, it can be claimed
to be conceptually general and important to the entire generators community,
regardless of domain expertise. I believe that the generators community has the
opportunity (and the obligation!) to develop infrastructure that will be essential
for developing future generators. In this way, no generator author will be able
to afford to be completely unaware of generators research.

Of course, the potential impact of infrastructure work has some boundaries.
These are worth discussing because they will help focus our research. The mar-
gin of impact for infrastructure is small exactly because domain-specificity is so
inherent in generators work—domain knowledge is the quintessence of a gener-
ator. I usually think of the range with potential for generator infrastructure as
a narrow zone between the vast spaces of the irrelevant and the trivial. Infras-
tructure is irrelevant when the domain is important and its abstractions mature.
For domain specific languages like Yacc, Perl, SQL, etc., it does not matter
what infrastructure one uses for their generators. The value of the domain is
so high, that even if one invests twice as much effort in building a generator,
the “wasted” effort will be hardly noticed. Similarly, infrastructure is sometimes
trivial. A lot of benefit has been obtained for some domains by mere use of text
templates. Consider Frame Processors [2]—a trivial transformational infrastruc-
ture with significant practical applications. Frame Processors are like low-level
lexical macros. A more mature meta-programming technology is certainly pos-
sible, but will it matter, when Frame Processors are sufficient for getting most
of the benefit in their domain of application?

Despite the inherent limitations of research in generator infrastructure, I
believe the potential is high. Although the range between the irrelevant and
the trivial is narrow, it is not narrower than the research foci of many other
communities. After all, scientific research is the deep study of narrow areas.
If the required depth is reached, I am hopeful that practical applications will
abound. For example, a convenient, readily available, and well-designed meta-
programming infrastructure for a mainstream language is likely to be used by
all generator developers using that language.

4.3 Promising Infrastructure Directions

To further examine the promising directions for having real impact on generator
development, it is worth asking why generators fail. T would guess (without any
statistical basis) that for every 100 generators created, about one will see any
popularity. The reasons for failure, I claim, are usually the small benefit (the
generator is just a minor convenience), extra dependency (programmers avoid
the generator because it introduces an extra dependency), and bad fit of the
generator (the code produced does not fit the development needs well). Of these
three, “small benefit” is a constant that no amount of research can affect—
it is inherent in the domain or the understanding of the domain concepts by

the generator writer. The other two reasons, however, are variables that good
generator infrastructure can change. In other words, good infrastructure can
result in more successful generators.

Given that our goal is to help generators impose fewer dependencies and fit
better with the rest of a program, an interesting question is whether a generator
should be regarded as a tool or as a language. To clarify the question, let’s char-
acterize the two views of a generator a little more precisely. Viewing a generator
as a language means treating it as a closed system, where little or no inspection
of the output is expected. Regarding a generator as a tool means to support a
quick-and-dirty implementation and shift some responsibility to the user: some-
times the user will need to understand the generated code, ensure good fit with
the rest of the application, and even maintain generated code.

The two viewpoints have different advantages and applicability ranges. For
example, when the generator user is not a programmer, the only viable op-
tion is the generator-as-a-language viewpoint. The generator-as-a-language ap-
proach is high-risk, however: it requires buy-in by generator users because it
adds the generator as a required link in the dependency chain. At the same
time, it implies commitment to the specific capabilities supported by the gen-
erator. The interconnectivity and debugging issues are also not trivial. In sum-
mary, the generator-as-a-language approach can only be valuable in the case of
well-developed generators for mature domains. Unfortunately, this case is almost
always in the irrelevant range for generator infrastructure. Research on generator
infrastructure will very rarely have any impact on generators that are developed
as languages. If such a generator is successful, its preconditions for success are
such that they make the choice of infrastructure be irrelevant.

Therefore, I believe the greatest current promise for generator research with
impact is on infrastructure for generators that follow the generator-as-a-tool
viewpoint. Of course, even this approach has its problems: infrastructure for
such generators may be trivial—as, for instance, in the case of the “wizards”
in Microsoft tools that generate code skeletons using simple text templates.
Nonetheless, the “trivial” case is rare in practice. Most of the time a good
generator-as-a-tool needs some sophistication—at the very least to the level of
syntactic and simple semantic analysis.

How can good infrastructure help generators succeed? Recall that we want
to reduce dependencies on generator tools and increase the fit of generated code
to existing code. Based on these two requirements, I believe that a few good
principles for a generator-as-a-tool are the following;:

— Unobtrusive annotations: the domain-specific language constructs should be
in a separate file or appear as comments in a regular source file. The source
file should be independently compilable by an unaware compiler that will
just ignore the domain-specific constructs. Although this is overly restrictive
for many domains, when it is attainable it is an excellent property to strive
for.

— Separate generated code: generated code should be cleanly separated using
language-level encapsulation (e.g., classes or modules). A generator should

be a substitute for something the programmer feels they could have written
by hand and does not pollute the rest of the application. The slight per-
formance loss due to a compositional encapsulation mechanism should not
be a concern. A generator-as-a-tool is foremostly a matter of high-level ex-
pressiveness and convenience for the programmer, not a way to apply very
low-level optimizations, like inlining.

— Nice generated code: generated code should be well formatted, and natural
(idiomatic) for the specific target language. This ensures maintainability.

— Openness and configurability: The generator itself should be written using
standard tools and should even be changeable by its users! Code templates
and pattern-based transformation languages are essential.

For instance, recall the DiSTiL generator that I mentioned in Section 2. DiSTiL
is an extension to the C language. The DiSTiL keywords are obtrusive, however,
and the DiSTiL generated code is weaved through the C code of the application
for efficiency. I reproduce below the DiSTiL source code fragment shown earlier:

struct phonebook_record {...}; // C definition

typeq (phonebook_record, Hash(Tree(Malloc(Transient)))) typeql;

Container (typeql, (Hash (phone), Tree (name))) contl;

Cursor (contl, name > "Sm" && name < "Sn", ascending(name))
cursl; // DiSTilL definitions

foreach(cursil)
. ref(cursl, name)
// DiSTil operations mixed with C code

If I were to reimplement DiSTiL now, I would introduce all its definitions
inside comments. All the generated code would use standard encapsulation fea-
tures of the target language (e.g., classes in Java or C++) and instead of special
traversal operations, like foreach, I would use the existing C++ STL idioms for
collections. Essentially, DiSTiL. would just be a generator for code that the pro-
grammer could otherwise write by hand. The dependency would be minimal—
the programmer is always in control and can choose to discontinue use of the
generator at any time. The source code could look like the following;:

/* *@Typeq Hash[phone] (Tree[name] (Malloc(Transient))) ContTypel;
* *@Container ContTypel contil;
* *Q@Cursor Cursi(contl, name > "Sm" &% name < "Sn",
ascending(name)) ;

*/

struct phonebook_record {...};
for (ContTypel::Cursl curs = contl.begin();
curs != contl.end();

curs++)
. curs->name ...
// C++ STL collection idiom

Clearly, good infrastructure can be invaluable in such a generator imple-
mentation. There need to be mature tools for parsing both the original source
language code and the structured comments. Creating language extensions in-
side comments can also be facilitated by a special tool. Debugging of generated
code is a thorny practical issue that can be alleviated only with good infrastruc-
ture. Making the generator itself be an open tool that its users can configure is
essential. This can only be done if the generator is based on a standard meta-
programming infrastructure, instead of being a one-time result. All of the above
tasks are research and not straightforward development: the right design of all
these language tools is very much an open problem.

In short, generators research can have impact through infrastructure. Even
if the infrastructure is not instantly widely adopted, by designing it correctly we
can hope that the generators the do adopt our infrastructure end up being the
successful ones.

5 What Is Generators Work Anyway?

The second cause of many of the difficulties of the generators research commu-
nity is the lack of consensus on what is generators research. The community
does not have a well-defined background—there is no set of papers or textbooks
that we all agree everybody should read before they do research in this area.
Of course, the limits of what is considered topical for our research community
are inherently vague: some of our research can fit the general programming lan-
guages community, while some more fits fine in traditional software engineering
outlets. Nevertheless, I do not think this is the real problem. Multiple research
communities have significant overlap. In fact, the generators community does
have a very distinct research identity. Generators researchers work on very spe-
cific problems (e.g., language extensibility, meta-programming, domain-specific
language design). Therefore, I believe that the lack of consensus on the core
of generators research is a truly solvable problem, which just requires a lot of
community vigilance!

It is perhaps interesting to briefly discuss why generators researchers do re-
search in this area. What are the elements that attract us to this particular style
of research and why do we feel the problems that we work on justify our research
existence? I think that there are two main groups of people doing research in this
area. The first consists of the people who are enthusiastic about generators as
an intellectual challenge. The well-known argument for translation techniques
applies perfectly to generators research: “If you are doing Computer Science,
you probably think computations are cool. If so, then what can be cooler than
computing about computations?” There is a certain amount of excitement when

one observes a program creating another program. Many generators researchers
still feel the magic when they come across a self-reproducing program. 2

The second group of people who do research in generators are those who see a
lot of practical potential for simplifying programming tasks through automation.
These researchers are primarily interested in the software engineering benefits
of generators. Indeed, in my experience, the potential for automating software
development is responsible for a steady supply of graduate students who aspire to
make significant contributions to generators research. Most of them are quickly
discouraged when they realize that automation of programming tasks is a well-
studied, but extremely hard problem. Yet others join the ranks of generators
researchers for good.

With this understanding of “who we are”, I believe we should try to establish
a consistent identity as a research area. Again, this requires vigilance. But we
can and should have some agreement across the community on issues like:

— What is the standard background in generators research? (This book largely
tries to address this question.) What papers or books should most people be
aware of ?

— What are the elements of a good paper in the area? In the case of domain-
specific work, how can we make sure it is valuable to non-domain-experts?

— What are some big open problems in generators? What are promising di-
rections for high impact? (Batory’s “The Road to Utopia: A Future for
Generative Programming”, in this volume, contains more discussion along
these lines.)

Finally, we do need a prestigious, reliable publication outlet. Nothing de-
fines a community better than a flagship publication channel. This will allow
researchers to be permanently associated with the area, instead of seeking to
publish strong results elsewhere.

References

1. William Aitken, Brian Dickens, Paul Kwiatkowski, Oege de Moor, David Richter,
and Charles Simonyi, “Transformation in Intentional Programming”, in Prem De-
vanbu and Jeffrey Poulin (eds.), proc. 5th International Conference on Software
Reuse (ICSR ’98), 114-123, IEEE CS Press, 1998.

2. Paul Basset, Framing Software Reuse: Lessons from the Real World, Yourdon Press,
Prentice Hall, 1997.

3. Don Batory, Bernie Lofaso, and Yannis Smaragdakis, “JTS: Tools for Implementing
Domain-Specific Languages”, in Prem Devanbu and Jeffrey Poulin (eds.), proc. 5th
International Conference on Software Reuse (ICSR ’98), 143-155, IEEE CS Press,
1998.

4. Don Batory, Gang Chen, Eric Robertson, and Tao Wang, “Design Wizards and
Visual Programming Environments for GenVoca Generators”, IEEE Transactions
on Software engineering, 26(5), 441-452, May 2000.

2E.g., ((lambda (x) (list x (list ’quote x))) ’(lambda (x) (list x (list
’quote x)))) in Lisp.

5. William Clinger and Jonathan Rees, “Macros that work”, Eighteenth Annual ACM
Symposium on Principles of Programming Languages (PoPL ’91), 155-162, ACM
Press, 1991.

6. Krzysztof Czarnecki and Ulrich Eisenecker, Generative Programming: Methods,
Techniques, and Applications, Addison-Wesley, 2000.

7. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold, “An Overview of AspectJ”, in Jgrgen Lindskov Knudsen (ed.),
proc. 15th European Conference on Object-Oriented Programming (ECOOP ’01). In
Lecture Notes in Computer Science (LNCS) 2072, Springer-Verlag, 2001.

8. Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba, “Hy-
gienic macro expansion”, in Richard P. Gabriel (ed.), proc. ACM SIGPLAN ’86
Conference on Lisp and Functional Programming, 151-161, ACM Press, 1986.

9. Brian McNamara and Yannis Smaragdakis, “Functional programming in C++”, in
Philip Wadler (ed.), proc. ACM SIGPLAN b5th International Conference on Func-
tional Programming (ICFP ’00), 118-129, ACM Press, 2000.

10. Brian McNamara and Yannis Smaragdakis, “Functional Programming with the
FC++ Library”, Journal of Functional Programming (JFP), Cambridge University
Press, to appear.

11. Charles Simonyi, “The Death of Computer Languages, the Birth of Intentional
Programming”, NATO Science Committee Conference, 1995.

12. Yannis Smaragdakis and Don Batory, “DiSTiL: a Transformation Library for Data
Structures”, in J. Christopher Ramming (ed.), Conference on Domain-Specific Lan-
guages (DSL ’97), 257-269, Usenix Association, 1997.

13. Yannis Smaragdakis and Don Batory, “Implementing Reusable Object-Oriented
Components”, in Prem Devanbu and Jeffrey Poulin (eds.), proc. 5th International
Conference on Software Reuse (ICSR ’98), 36-45, IEEE CS Press, 1998.

14. Yannis Smaragdakis and Don Batory, “Implementing Layered Designs with Mixin
Layers”, in Eric Jul (ed.), 12th European Conference on Object-Oriented Program-
ming (ECOOP ’98), 550-570. In Lecture Notes in Computer Science (LNCS) 1445,
Springer-Verlag, 1998.

15. Yannis Smaragdakis and Don Batory, “Application Generators”, in J.G. Webster
(ed.), Encyclopedia of Electrical and Electronics Engineering, John Wiley and Sons
2000.

16. Yannis Smaragdakis and Don Batory, “Scoping Constructs for Program Gener-
ators”, in Krzysztof Czarnecki and Ulrich Eisenecker (eds.), First Symposium on
Generative and Component-Based Software Engineering (GCSE ’99), 65-78. In Lec-
ture Notes in Computer Science (LNCS) 1799, Springer-Verlag, 1999.

17. Yannis Smaragdakis and Don Batory, “Mixin Layers: an Object-Oriented Im-
plementation Technique for Refinements and Collaboration-Based Designs”, ACM
Trans. Softw. Eng. and Methodology (TOSEM), 11(2), 215-255, April 2002.

18. Eli Tilevich, Stephan Urbanski, Yannis Smaragdakis and Marc Fleury, “Aspectiz-
ing Server-Side Distribution”, in proc. 18th IEEE Automated Software Engineering
Conference (ASE’08), 130-141, IEEE CS Press, 2003.

19. Todd Veldhuizen, “Scientific Computing in Object-Oriented Languages web page”,
http://www.oonumerics.org/

