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Static analyses aspire to explore all possible executions in order to achieve soundness. Yet, in practice, they

fail to capture common dynamic behavior. Enhancing static analyses with dynamic information is a common

pattern, with tools such as Tamiflex. Past approaches, however, miss significant portions of dynamic behavior,

due to native code, unsupported features (e.g., invokedynamic or lambdas in Java), and more. We present

techniques that substantially counteract the unsoundness of a static analysis, with virtually no intrusion

to the analysis logic. Our approach is reified in the HeapDL toolchain and consists in taking whole-heap

snapshots during program execution, that are further enriched to capture significant aspects of dynamic

behavior, regardless of the causes of such behavior. The snapshots are then used as extra inputs to the static

analysis. The approach exhibits both portability and significantly increased coverage. Heap information

under one set of dynamic inputs allows a static analysis to cover many more behaviors under other inputs.

A HeapDL-enhanced static analysis of the DaCapo benchmarks computes 99.5% (median) of the call-graph

edges of unseen dynamic executions (vs. 76.9% for the Tamiflex tool).
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1 INTRODUCTION

Static analysis approaches typically attempt to be over-approximate and cover all possible program
behavior: when there are two possible paths of execution, a static analysis explores both; when
there are many possible values for a variable, a static analysis examines all of them, usually by
employing an abstraction that groups together a large number of concrete values.

Still, practical static analyses routinely suffer from unsoundness [Livshits et al. 2015], by failing
to account for standard dynamic behavior. The causes of this unsoundness are features such as
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reflection, native code, dynamic loading, but also cross-language development (e.g., hybrid Java-
Javascript apps or languages running on top of the JVM and integrating with the Java libraries) and
the engineering complexity of supporting a growing number or more-and-more complex language
features, such as Java’s invokedynamic instruction. The typical modern Java application uses complex
frameworks that integrate external resources (e.g., XML files) with inversion-of-control patterns
that present static analysis frameworks fail to account for.
An approach for coping with the ever-increasing dynamism of realistic programs is to capture

dynamic behavior and encode it as an input for subsequent static analysis. For instance, Hirzel et al.
[2007, 2004] attempt to counter dynamic loading by observing its effects, recording the results, and
re-running the static analysis. The Tamiflex tool [Bodden et al. 2011] records the result of reflective
operations and dynamic loading actions, produces a log as an input to the static analysis, or even
rewrites the program with these sources of dynamic behavior replaced by the exact behavior
observed during the dynamic run.
Although these efforts have pushed the state of the art, they still fall short of capturing many

sources of unsoundness, such as program semantics expressed in different languages (be it Javascript
code for UI elements, or C/C++ code in native libraries) or the lack of support for cutting-edge
language features (e.g., invokedynamic and lambdas). Unsound handling of such features translates
into reduced analysis coverage: the static analysis misses many valid program behaviors.
Our work proposes an approach that compensates for the coverage shortcomings of static

analysis by integrating dynamic information produced from heap dumps: snapshots of dynamic
behavior that record the shape of the heap, the stack shape (i.e., full stack traces) when every object
was created, and more. Heap dumps reflect a substantial portion of the complex dynamic behavior
of a program, regardless of the cause of such behavior: instead of watching what happens at
specific actions (e.g., reflection or dynamic loading operations), a heap dump records the cumulative
semantic effects of program execution in its native setting and complex environment. At the same
time, heap dumps do not miss the ability to capture dynamic actions (e.g., a dynamic call-graph)
since each object (either natively or through heap enricher functionality that we introduce) records
information describing the dynamic context at the time of its allocation.
We implemented our approach in the HeapDL tool for Java programs, on both the JVM and

Android. HeapDL leverages different APIs to produce standard HPROF heap dumps, and processes
them to produce representations of the heap and call graph that static analysis can use. (HeapDL
also produces a packaged version of both the statically available and the dynamically loaded classes
of the program.) We show the benefits of HeapDL by importing its output in standard static analyses
(points-to and call-graph analysis). The result demonstrates the benefits of our approach:

● Heap dumps produce significant increases in analysis coverage, compared to past techniques
that enhance a static analysis with knowledge about dynamic actions (e.g., reflection and
dynamic loading). A static analysis enriched by our HeapDL tool discovers 24% more call-
graph edges and 86% more references between heap objects, compared to the same analysis
enriched by the Tamiflex tool. The benefit is clear in direct comparisons of the predictive
power of each analysis: given the same dynamic input, the HeapDL-enhanced analysis
statically computes 99.5% (median) call-graph edges of dynamic executions under different
inputs, vs. 76.9% for Tamiflex.
● HeapDL heap dumps are better suited for precise integration with static analysis. Our heap
enricher allows the recording of context that is otherwise not readily available. Notably, we
generate context-sensitive information for object-sensitive analyses, of any context depth.
This information can be directly integrated in a static analysis that uses the same context
abstraction.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:3

● Heap dump technology is by nature more portable than dynamic agents that watch specific
program actions. HeapDL supports both JVM and Android dynamic analysis, unlike past tools
(e.g., Tamiflex) that are JVM-only. We argue that this is an inherent difference, rather than an
outcome of current technology trends: it is more likely for a runtime environment to support
snapshots of state rather than arbitrary recording of program actions during execution.

More generally, our approach follows a theme well-established in the literature: the combination
of static and dynamic analysis, so that concrete information can take the place of static abstractions
that are hard or impossible to compute. In this general theme, there are specific elements of our
techniques that are unique, and are largely responsible for the benefits we obtain. These elements
include: (a) the use of heap snapshots with state-of-the-art technology; (b) the enhancing of such
snapshots with extra context information and with objects that would normally not be available; (c)
the packaging of dynamic information for reuse by common whole-program static analyses (such
as points-to analyses or call-graph construction). We next describe our approach with an emphasis
on these unique elements.

2 OVERVIEW OF THE APPROACH

We begin with an overview of the main elements of the HeapDL approach: the overall workflow,
current heap dump technology, and output for integration with static analyses. The discussion in
this section is purposely simplified. In Section 3 we discuss how we enhance the basic scheme.

2.1 Motivation and Main Idea

The HeapDL approach consists of taking snapshots of a running program’s heap and using them to
provide further input for a static analysis. The intent is to uniformly capture the state-changing
effects of hard-to-analyze features. These features include native and other heterogeneous code,
cutting-edge language features, dynamic loading, and more. A modern application crucially depends
on such features, yet static analysis frameworks (such as the Soot infrastructure [Vallée-Rai et al.
1999] or the Doop pointer analysis framework [Bravenboer and Smaragdakis 2009]) have incomplete
support for them. Examples in the Java world include:

● Virtually all modern Java programs have semantics that depend on native code. For in-
stance, atomic operations are essential for high-performance shared-memory parallelism.
Atomic reads and writes on the heap (e.g., to object fields or array entries) are imple-
mented as native Java methods. If the static analysis does not model all of them, it will
miss significant state updates. It is as essential for an analysis to model, e.g., native method
sun.misc.Unsafe.compareAndSwapObject as it is to support plain heap load and store instruc-
tions. Yet doing so is hard. Extra native operations get added in every release of the JDK and
analysis authors typically do not keep up with them. These operations can be much more
numerous than JVM instructions. On a quick count, there are over 6,000 native methods in
OpenJDK 8u60 (vs. under 200 instruction opcodes in the JVM instruction set).
● Most enterprise or mobile Java programs heavily leverage complex frameworks, effectively
becoming heterogeneous applications. For example, an Android app is a complex composition
of UI elements, whose specification is in XML, and Java code. Upon loading, the XML
specification is used to instantiate many graphical components, which can also be referred to
from plain Java code via dynamic lookups (using integer keys). Similar examples of framework
usage aboundÐin Servlet coding, J2EE applications and more. Java Enterprise frameworks
heavily employ XML specifications, with inversion-of-control patterns used to determine
how plain Java code is invoked. Static analyses attempt to capture the semantics of such
frameworks to the extent possible. E.g., the FlowDroid [Arzt et al. 2014] add-on to the Soot
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Fig. 1. Design of HeapDL

framework implements basic processing of Android XML layout files. Yet such support is
always vastly incomplete (as will also be apparent in our experimental evaluation) due to the
complexity and ever-changing nature of modern frameworks.
● Even with the limited size of the JVM instruction set, static analyses do not fully support it.
Java 7 introduced a new bytecode opcode, invokedynamic [Rose 2009], together with an API
(for łmethod handlesž) around it, that can offer the programmer the capability to completely
customize dynamic program behavior. The invokedynamic functionality is used to implement
dynamic languages on the JVM and also a growing number of dynamic features of Java (e.g.,
lambdas [Oracle 2014b], string concatenation [Oracle 2017], or generics specialization[Goetz
2016]). To this date, support for invokedynamic in static analysis frameworks has been, at
best, incomplete.

All the above instances result in unsoundness; the static analysis fails to capture actual dynamic
behavior. This unsoundness is quantified as reduced coverage of program behavior. HeapDL com-
pensates by adding dynamic information to static analysis. Semantic effects, captured by the heap
state and dynamic call-graph of the application, are extracted from a heap dump and used to
supplement a static analysis. Figure 1 shows the main components, schematically. HeapDL relies
on profiling capabilities of the target runtime. Both major Java-based platforms, Android and the
JVM, provide multiple memory profiling and heap dumping solutions. With an enriching agent
(Section 3) we can make a heap dump encode even more information that is of direct value to static
analysis.
The dynamic information is output in a form suitable to import in a static analysis. HeapDL

explicitly targets whole-program analyses, rather than local static analyses. It is, for instance,
much better suited for points-to analysis, heap shape analysis, or call-graph construction, rather
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than for symbolic execution or model checking. This is reflected both in the choice of technology
for capturing dynamic information (Section 2.2) and in the packaging of information for reuse
(Section 2.3).

To see how a heap snapshot can counter the effects of unsoundness in static analysis, we can
consider some concrete examples.

Example: external code effects. Consider an Android application, with several Java components
linked together by means of an XML specification. By taking a snapshot of the running application,
HeapDL can capture behaviors that are very hard to follow via static analysis alone. For instance, the
instantiation of UI components and their inter-linking (e.g., a window object contains a reference
to three panels and a slider) will be hard to detect statically, since it is implemented deep in the
Android runtime, in large part in native code. A heap snapshot can inform the static analysis about
the instances of these UI components and their inter-connectivity. In this way, the analysis starts
from a valid initial setup and can cover substantially more code (e.g., by statically analyzing possible
called methods on these components).

Example: better reflection analysis. Even if we focus only on reflection analysis, heap snapshots
can offer advantages compared to merely recording dynamic reflective actions. Consider a program
that holds a large array of k ≈ 1000 class names, initialized so that no static analysis can know
its values (e.g., read from an XML file). These class names can represent different to-be-loaded
components (e.g., plug-ins of a large application). The class names can be used to call methods
via reflection. In a single execution, a small number, e.g., 3, distinct class names are used. Current
state-of-the-art tools for handling reflection, such as Tamiflex, watch dynamic reflective actions and
hence record the calls to the 3 classes’ methods. Therefore, a static analysis enhanced with Tamiflex
output can also analyze the 3 reflective calls. HeapDL takes a heap snapshot, so it can capture all k
members of the array. A static analysis enhanced with HeapDL output and with minimal reflection
logic will analyze all possible calls to all k classes’ methods.

Example: handling extra language features. Consider a static analysis that does not handle the
invokedynamic instruction or its associated method-handles API. Heap snapshots can alleviate the
effects of such unsoundness in two ways. First, a heap snapshot also includes snapshots of dynamic
call graphs, and can, therefore, capture the target of an invokedynamic call. Second, the heap effects
of the method called via invokedynamic are captured in the snapshot. In this way, a static analysis
enhanced with HeapDL input can attain significantly higher coverage of program behaviors that
employ invokedynamic calls.

Generally, heap snapshots can capture complex dynamic behavior that is otherwise invisible to a
static analysis and augment the static analysis with such information.

2.2 Background: Heap Dumps, Allocation Tracking

HeapDL implements a heap dump analyzer that accepts standard HPROF [Oracle 2016a] heap
dumps. Java or Android applications are dynamically executed by running on the unmodified,
standard Java Virtual Machine or Android runtime.
A heap dump is primarily a complete encoding of a program’s heap as a graph, i.e., a snapshot

of all interconnections between heap objects. Heap dumps can contain anything that is loaded
or computed by the application or VM, i.e., not just any normal heap objects constructed by the
application but also primitives, class objects, and strings. This view, however, is too poor to capture
the wealth of information available through heap-dump APIs. In our setting, when we refer to a
heap dump, we mean a heap dump with allocation tracking: each heap object records a full stack
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trace of the run-time context at the exact allocation instruction. Allocation tracking has a run-
time cost but is a portable facility, uniformly available in modern heap dump APIs. By leveraging
allocation tracking, a typical heap snapshot also integrates many thousands of stack snapshots, at
earlier points of the execution (i.e., whenever a heap object was allocated). These stack snapshots are
significantly condensed, containing merely call-graph edges (i.e., which instruction called which
method) rather than full stack contents. (In Section 3 we see how we force the collection of even
more stack information, via our enriching agent.) This is, however, highly valuable information
for enhancing the coverage of a static analysis. Compensating for the unsoundness of reflection,
dynamic loading, invokedynamic, inversion-of-control patterns, etc. is majorly facilitated by these
dynamic call-graph snapshots.

2.3 Output Schema

HeapDL accepts as input both the program code and a heap dump. It then distills the heap dump
into input tables for a static analysis, by mapping objects and call-graph elements to abstractions.
These abstractions are derived by consulting the program code. HeapDL then outputs the tables in
standard text form, as comma-separated value files, with appropriately externalized identifiers.
In Figure 2, we present a schema of the domain of tables created by HeapDL for consumption

by a context-insensitive static analyzer. The heap relations generated by HeapDL bridge the gap
between the domain of an application’s state and the domain of static analysis. The relation Ob-

jectFieldValue captures what values an object’s fields can point to, and similar information is
kept for static fields of a class (StaticFieldValue) and arrays (ArrayContentsValue). Call-
GraphEdge captures the dynamic call-graph: every pair of successive stack trace elements forms
an edge. That is, the call-graph is the union of all call-graph edges taken from the (large number
of) stack snapshots collected due to allocation tracking. Notably, we have found that call graphs
constructed in this way are comparable in size and information content with ones created using
explicit instrumentation of calls. (This is perhaps not too surprising: object allocation is frequent
and virtually all meaningful call chains will reach code that causes at least one allocation, possibly
of a temporary object, resulting in the call chain’s capture.) Instrumentation, through Java or native
agents, is a less portable technique than heap snapshots, howeverÐe.g., there is no Android API for
user-defined agents; bytecode rewriting can be used but fails for native code or system classes.

All of the above mappings employ different kinds of abstraction: objects are mapped to abstract
objects, array contents are merged, the union of field-points-to sets (per abstract object) or call-
graph-edge sets (per invocation site) is taken. Our heap object abstractions,O , match those typically
used by whole-program static analysis frameworks, i.e., usually represent allocations sites:

1 ..

2 String [] a = new String [4]; // allocation site

3 Object o = new Object (); // allocation site

4 ..

On the other hand, when statically modeling string constants and class objects, the identity of
these is used as the object abstraction, instead of their allocation site. For instance, the identity
of classes is the fully qualified name (and the classloader if the static analyzer can distincguish
classes with the same name loaded by different classloaders). The identity of strings can also be
their content if the static analyzer is tracking strings for the purpose of static reflection analysis.

To generate dynamically inferred heap relations, HeapDL must first find the right object abstrac-
tions from the heap dump. This is often a best-effort match. HeapDL walks the allocation traces
and uses heuristics to find the most probable frame where the real allocation site is found as a first
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O is a set of object abstractions (e.g., allocation sites) F is a set of fields

T is a set of class types I is a set of instructions

M is a set of methods

ObjectFieldValue(obj : O, field : F, value : O)
StaticFieldValue(class : T, field : F, value : O)
ArrayContentsValue(obj : O, value : O)
CallGraphEdge(invocation: I, method : M)
Reachable(method : M)

Fig. 2. Our domain, for context-insensitive heap relations extracted by HeapDL

approximation. Given this approximation, it tries to then match by type, line number, and other
information. Some of this information is only present in debug information of the bytecode. Since
the line number is not always guaranteed to be present in the application under analysis, matching
is sometimes done just by method descriptor and type. In cases were the actual code is not statically
available, a dummy abstract object allocation site containing the right type information is generated.
This typically happens due to either native code, foreign code, or cutting-edge language features
such as lambda meta-factories that generate transient classes and are incompletely modeled.

With the above schema, the information that HeapDL provides to static analysis is compact and
in line with current static (whole-program) points-to analyses or call-graph construction. A static
analysis typically only needs to import the HeapDL information and consider it as ground facts,
before it starts its own further propagation of values. In general, the integration of HeapDL into
an analysis toolchain is similar to that of past tools, such as Tamiflex: dynamic execution yields
call-graph edges and object references, in an externalized format (comma-separated value files).
An analysis-specific import method subsequently performs a straightforward mapping from the
externalized information to the structures that the analysis uses to represent its own inferences.

Since static analysis is fundamentally over-approximate, small amounts of provided information
(e.g., a few hundred extra call-graph edges or values in object fields that were previously undetected)
are often responsible for making the static analysis compute a much larger number of inferences.

3 ENRICHING HEAPS AND CONTEXT SENSITIVITY

Enriching heaps is a process of strategically making small additions to the state of the application
so that a heap dump maintains more information that we would like to produce as input to a static
analysis. This technique leverages the state-preserving abilities of the profiling toolchain. It also
preserves the actual linking between objects and references of the original state of the application
with that of the additional information.

There are three main ways that the HeapDL context enricher injects additional information into
the state of the application:

● Adding new references within agent code, e.g., during class loading.
● Injecting code into the application to add new references within the application.
● Injecting code into the application to create new objects at strategic program points.

These additions are typically made using instrumentation agents, in Java or in native code, through
standard APIs of the JVM. HeapDL currently only supports heap enriching on the JVM platform,
since Android does not have a standard API for agents.
HeapDL performs heap enrichment for several different purposes, detailed next.
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1 class ClassData {

2 String name;

3 ClassLoader loader;

4 byte[] bytecode;

5 ...

6 }

7

8 static List <ClassData > classes = new ArrayList <>();

9

10 public byte[] transform(ClassLoader loader , String name ,

11 Class <?> clazz , .., byte[] bytecode) {

12 ...

13 classes.add(new ClassData(loader , name , bytecode));

14 ...

15 }

Fig. 3. Heap enricher example: Enriching heap with bytecode of loaded classes (code).

3.1 Capturing Dynamically Loaded Code

HeapDL captures all dynamically-loaded bytecode and packages it for use by a static analysis. This is
beneficial, since dynamically-loaded classes (including temporary dynamically-generated codeÐe.g.,
for invokedynamic and other method-handle API support) would not otherwise be available for static
analysis. This general pattern has also been present in past work. For instance, Tamiflex [Bodden
et al. 2011] creates an archive file with loaded classes by instrumenting class-load events via an
agent.
The complication, however, is that a loaded class is not uniquely identified by its name (or

its bytecode, as provided to the loader). In a running JVM, a class’s identity is represented by a
combination of its static identity (i.e., its name, which is an artificial id for internally-generated,
anonymous classes) and its class loader object (an instance of type ClassLoader) [Lindholm et al.
2014, ğ5.3]. The class loader can arbitrarily transform the loaded bytecode. Therefore, an approach
that records bytecode by capturing the inputs of class-load events (before actual loading has taken
place) is incomplete: the uniquely-identifying version of a class is only available after loading is
complete.
Enriched heap dumps can solve this problem and capture loaded classes together with their

instances on the heap. In a plain, un-enriched, heap dump, objects do not refer to their classes’
bytecode, as this is compiled away by the VM. Instead, we can instrument the code (at the point of
loading classes) to perform a simple addition to the state so that dynamically loaded bytecode is cap-
tured. Figure 3 shows the skeletonÐwe omit features such as error handling, logging, performance
optimizations, etc. for clarity.
We can see in Figure 3 that capturing the loaded bytecode can be achieved by storing, on line

13, a reference to the ClassLoader, the fully qualified name of the class, and the bytecode used to
create it. With this technique there is no need for extra logic to package the classes. We use this
combination of objects as keys and the structure of the heap dump contains links from class object
references to their bytecode via this key. Additionally, the heap dump contains links from each
instance object to its class object, and with the unique name-loader combination we have the set of
associations shown in Figure 4: from every object, we can get its (dynamic) class and bytecode.
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Class clazz

...

ClassLoader

Object Instance

Class clazz

...

Class

String name

ClassLoader loader

...

ClassData

String name

ClassLoader loader

byte[] bytecode

Fig. 4. Heap enricher example: Enriching heap with bytecode of loaded classes.

3.2 Context Sensitivity

Whole-program static analyses often employ context sensitivity to increase precision. Context
sensitivity consists of qualifying all analysis inferences with special łcontextž entities, so that
different dynamic executions are distinguished. The two main kinds of context sensitivity are
call-site sensitivity [Sharir and Pnueli 1981] and object sensitivity [Milanova et al. 2005], with
several alternatives and mixes proposed (e.g., type sensitivity [Smaragdakis et al. 2011] and hybrid
object-call-site sensitivity [Kastrinis and Smaragdakis 2013]).

It is, therefore, desirable to provide context-sensitivity as an option for HeapDL heap snapshots.
Since HeapDL has full access to dynamic information, it makes sense to preserve at least as much
precision as the static analysis seeks to achieve. This requires a) creating a general infrastructure
to instantiate and manipulate arbitrary context; b) capturing context not usually present in heap
dumps.

Heap dumps with allocation tracking require no extra effort to support call-site sensitive contexts.
In call-site sensitivity, context consists of a tuple of call sites (i.e., invocation instructions) that
identify łcallersž. For a call-graph edge, the context of the called method is its caller, the caller’s
caller, and so on, up to a maximum context depth. Similarly, an allocated object’s context is the
caller of the method that allocated it, the caller’s caller, etc. This information is naturally present in
dynamic stack traces, which yield information for relation CallGraphEdge and for every allocated
object on the dynamic heap (via allocation tracking).

In contrast, object sensitivity is not possible to implement from stack traces aloneÐour enriching
agent has to maintain extra information. Object-sensitive context is a tuple of abstract objects,
representing the receiver object of different calls. For a call-graph edge, the context of the called
method is its receiver (abstract) object, rec; the receiver, rec2, of the method call that allocated rec;
the receiver of the method call that allocated rec2; and so on. Similarly, an allocated object’s context
is the receiver of the method call that allocated it, the receiver of the call that allocated the former
receiver, etc.
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1  class ObjAndCtx { Object o, ctx; ..}

2

3  class A {

4    void foo() {

5     Node n = new Node();

6     new ObjAndCtx(n, this);

7    }

8  }

9  

10 class B {

11   void bar() {

12     A a = new A();

13     new ObjAndCtx(a, this);

14     a.foo();

15   }

16 }

17 

18 class C {

19   void baz() {

20     B b = new B();

21     b.bar();

22   }

23 }

obj

ObjAndCtx

ctx

Application code + instrumentation

obj

ObjAndCtx

ctx

Fig. 5. Enriching the state with object sensitive heap contexts

Object sensitivity is both valuable in practical analyses and an excellent example of our heap
enriching mechanisms for context sensitivity. We describe its support next, on the two key parts of
heap dump information: context for heap objects and context for methods in a dynamic call-graph.

3.2.1 Storing Heap Contexts on Object Creation. In order to support object sensitivity, HeapDL
maintains extra context information per allocated object. This is done via a class ObjAndCtx that
associates each dynamic object with its allocation context. HeapDL instruments the application
code to allocate instances of ObjAndCtx every time a regular object would be allocated. The HeapDL
heap enricher is implemented as a Java agent that performs load-time structured bytecode trans-
formations. This is by no means the only way to implement such a strategy. Other ways include
native agents, aspect oriented programming with bytecode weaving, and more.

Figure 5 shows a target program with additional instrumentation for object sensitivity. The tuple
structure that represents the heap context of an object appears at Line 1. This is injected into the
classpath of the application and instances of this structure are created on lines 6 and 13. At any
interesting program points where an object is constructed, the instrumentation keeps track of the
receiver of the current method.
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1 class EdgeCtx {

2 Object callerCtx , calleeCtx;

3

4 void EdgeCtx(Object calleeCtx) {

5 this.callerCtx = getCallerCtx ();

6 this.calleeCtx = calleeCtx;

7 }

8

9 static void storeCallerCtx(Object o) { ... }

10 static Object getCallerCtx () { ... }

11 }

Fig. 6. Edge Context

Note that, even though one receiver object is kept, object-sensitive context of any depth can
be computed: the receiver object contains a reference to the receiver object of its own allocation
method, etc.
The example shows objects constructed within instance methods. Objects created inside static

methods are handled differently, since these have no receiver object, so the receiver of the caller is
used for the purposes of heap contexts. Every currently active stack frame also keeps track of its
receiver object, not shown in the figure.
HeapDL keeps track of context information only inside application code, to focus on the cases

that require maximum precision, and to avoid errors with the instrumentation of libraries. It also
economizes by not tracking the context of commonplace objects (which is typically not statically
modeled), such as primitive arrays, strings and string buffers.

3.2.2 Storing Calling Contexts for Context-Sensitive Call Graphs. The second piece of information
output by HeapDL that needs to be context-qualified is call-graph edges. Figure 6, shows an
additional simple data structure, EdgeCtx, inserted into the application’s class path and storing the
calling context of a call-graph edge. We can see that each EdgeCtx object contains a reference to the
caller context and the callee context. The storeCallerCtx method is used by the instrumentation
to keep track of the receiver of the caller, which is then used during the creation of the object by
getCallerCtx.
The enriching agent adds code to allocate a new EdgeCtx at every method call. When a new

EdgeCtx object is instantiated, a stack trace is created, as illustrated in Figure 7. In the stack trace,
HeapDL can extract the call-graph edge’s source and target from the 2nd and 3rd elements. In the
case of object sensitivity, as in our earlier discussion, the explicit context pointer is to a single
object, however one can extract context of any depth by following the pointers to the (context)
objects and retrieving their own allocation context.

An interesting observation is that EdgeCtx objects are by themselves a representation of dynamic
call-graph edges, and, indeed, the most precise one. Without EdgeCtx objects, a heap dump has no
representation of a specific dynamic call-graph edge, only of its mapping to source and target pairs,
as found in a stack trace (kept via allocation tracking). Unlike the earlier ObjAndCtx structures,
which give context to dynamic objects (which exist in the heap dump), EdgeCtx instances cannot
be uniquely mapped to other heap dump entities.

3.2.3 Producing Context Sensitive Information for Consumption by Static Analyzers. Figure 8
contains a refined version of the domain and output relations extracted by HeapDL in Figure 2. In
order to show how our output relations are built we need to further distinguish between abstract
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0  class A {

1    void foo() {

2     new EdgeCtx(this); // (a)

3     Node n = new Node(); 

4    }

5  }

6  

7  class B {

8   void bar() {

9      A a = new A();

10     new ObjAndCtx(a, this); // (b)

11     EdgeCtx.storeCallerCtx(this);

12     a.foo();

13   }

14 }

15 

16 class C {

17   void baz() {

18     B b = new B();

19     new ObjAndCtx(b, this); // (c)

20     b.bar();

21   }

22 }

23

24 C c = new C();

25 c.baz();

calleeCtx

EdgeCtx (a)

callerCtx

obj

ObjAndCtx (c)

ctx

at EdgeCtx.<init>

at A.foo:2

at B.bar:12

at C.baz:20  

Allocation

Trace
Application code + instrumentation

Allocation

Trace (a)

obj

ObjAndCtx (b)

ctx

Fig. 7. Original application code, instrumentation by context heap enricher (underlined), and the depiction of

the interaction between instrumentation heap objects (gray), allocation traces, and original heap objects.

objects, O , i.e., the objects used in the domain of static program analyzers, and concrete objects, L.
These concrete objects are ones that are found inside the heap dump, including allocation-trace
objects. Context-sensitive static analyses have parametric order in their contexts, and the calling
and heap context orders can be different. (An example of this is a 2-object sensitive analysis with
a 1-object sensitive heap context.) In our domain, n andm are the orders of the calling and heap
context respectively.

In heap dumps analyzed by HeapDL, concrete contexts LC are a subset of concrete objects L. Note
how, in earlier examples (Figures 3 and 6), all kinds of dynamic context shown were of type Object.
This is done on purpose: dynamic information maintains full detail until the moment it is packaged
into output relations. Concrete contexts are then abstracted to abstract context components, C .
The process differs, depending on the kind of context sensitivity that is employed. This process is
defined using an abstraction function α . For example, in the case of object sensitivity, the abstraction
function used is the same as the abstraction function used to map any concrete object in L to an
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L Concrete objects
LC ∶ L Concrete context components
C Abstract context components
n ∶ Z+ order of calling context sensitivity
m ∶ Z+ order of heap context sensitivity
CC ∶ ⨉

n C static calling contexts
CO ∶ ⨉

m C static heap contexts
α ∶ LC → C context abstraction function
β ∶ L → LC concrete context component of concrete object

ObjectFieldValue(ctx : Cc , obj : O, field : F, hctx : CO , value : O)
StaticFieldValue(class : T, field : F, hctx : CO , value : O)
ArrayContentsValue(hctxob j : CO , obj : O, hctxval : CO , value : O)
CallGraphEdge(callerCtx: CC , invocation: I, calleeCtx : Cc , method : M)
Reachable(ctx : Cc , method : M)

Fig. 8. Our domain, for context-sensitive heap relations extracted by HeapDL

abstract object in O . In a type-sensitive analysis, the abstraction function would yield the class in
whose code the concrete object got allocated.

Finally, in order to construct higher-order contexts, a function that maps concrete objects to their
contexts β is applied recursively n orm times to get the required number of concrete components
for a calling or heap context respectively. In HeapDL, for an object- or type-sensitive analysis this
mapping is built from the information references found inside ObjAndCtx and EdgeCtx objects.

3.3 Liveness

The instrumentations and additional references, particularly those that capture context information,
tend to force many more objects to remain live (i.e., reachable from GC roots). Although this
negatively affects the performance of the application, it helps to increase the amount of information
that can be extracted for the heap. Therefore, even though the context-sensitive heap enricher is not
suitable to be used on live mission critical systems, it can be used during pre-deployment analysis
of an application with great benefits, even for a context-insensitive analysis. Although during our
experimental evaluation we have not run into memory issues directly due to the heap-context
agent, to minimize the memory impact one can use the number of allocations referenced per
instrumentation point and randomly discard forced-live objects based on a probability computed
by a logarithmic function on the number of allocations.

4 DISCUSSION

Before we evaluate experimentally the impact of the HeapDL approach, it is useful to consider
conceptually its properties, as contrastedwith TamiflexÐa state-of-the-art tool for handling dynamic
language features.

The Tamiflex tool [Bodden et al. 2011] observes different run-time events that pertain to dynamic
language features, notably reflection and dynamic loading. The outcome of such events is recorded,
so that static analysis can take it into account. For instance, a reflective call can be treated as a
regular call with a known target, corresponding to the method observed in the instrumented run.
HeapDL uses heap snapshots that serve a dual purpose: they record both dynamic events as

in the Tamiflex approach (through stack traces kept via allocation tracking), and dynamic state.
When this state is used as input to an over-approximating static analysis, the results can model a
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lot more dynamic behaviors than those actually observed during the profiled program run. This
is a fundamental feature of the approach: it captures not-seen behaviors and, as expected in an
over-approximating static analysis, some of them may be spurious.
For a toy example, consider a method that performs a virtual call over a value read from the

heap:

1 void m(X x) {

2 C c = x.f;

3 c.foo();

4 }

An actual program run may observe a call to method m while x.f holds an object of type C1 (a
subtype of C). An approach, such as that of Tamiflex, that watches dynamic events will record the
call-graph edge from m to C1.foo(). However, the field x.f may hold several different values during
the program’s execution. Furthermore, the over-approximating nature of static analysis may infer
that x.f points to several different values during program executionÐe.g., even if each concrete
object only holds a unique value in its f field, grouping concrete objects into abstract ones can
yield multiple values for x.f.

Consider a case where, later in the program’s execution, x.f acquires a second value: an instance
of a class C2, also a subtype of C. If a HeapDL snapshot captures that value, the static analysis will
consider it and will yield a call-graph edge from m to C2.foo(). This does not correspond to any
observed program execution and may even be spurious: there is no guarantee that method foo is
ever invoked on that value of x.f.
Therefore, HeapDL can increase the analysis reach: it models more program behaviors than

approaches that only observe dynamic events. At the same time, it is interesting to evaluate whether
the increase in reach is reasonable (and not the result of vast imprecision) as well as whether it
corresponds to an increase in coverage of actual program behaviors.

5 EXPERIMENTAL EVALUATION

In this section we present the results of an experimental evaluation of HeapDL. This evaluation
intends to answer the following research questions:

RQ.A Is HeapDL effective? (1) Does it expose new information that is not currently picked
up through static analysis? (2) What impact does this have on the results of the analysis?
(3) Does this gain also occur when explicit support for reflection is switched on in pointer
analysis? (4) Furthermore, does HeapDL find additional information that a state-of-the-art
runtime analysis system like Tamiflex does not?

RQ.B Is HeapDL efficient? (1) What is the additional dynamic analysis burden (i.e., at program
run time)? (2) How much does the additional information add to the static analysis time?

RQ.C Does HeapDL increase coverage of the analysis, compared to a state-of-the-art runtime
analysis tool?

The size of the call graph, measured by the number of call graph edges, is used as metric in RQ.A
and RQ.B. In addition, we use the heap size as a metric in RQ.A. The heap size is the cumulative size
of relations, ArrayValue, InstanceFieldValue, and StaticFieldValue, as described in Figure 8.

The HeapDL analyzer is implemented1 as a plain Java application that produces tables in comma-
separated-values format. We used the Doop framework [Bravenboer and Smaragdakis 2009] as
a static analysis that accepts HeapDL input. HeapDL has integrations with two different imple-
mentations of Doop, that use the Soufflé [Jordan et al. 2016] and LogicBlox [Aref et al. 2015]

1Available online at https://github.com/plast-lab/HeapDL and http://heapdl.nevillegrech.com
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Datalog dialects, respectively. The integration with Doop so it can import HeapDL information
is minor, consisting of merely importing data and considering them analysis facts. Doop has full
support for complex Java language features, such as class initialization, exceptions, reflection, etc.
In addition, Doop has recently acquired state-of-the-art support for Android applications [Grech
and Smaragdakis 2017]. It specifically models the Android lifecycle, callbacks, GUI components,
etc. Hence, enhancing Doop’s coverage is not trivial. To parse heap snapshots, HeapDL uses a
modified version of JHat [Oracle 2016b], the reference Java heap analysis tool supplied as part of
OpenJDK. The modifications consist of error recovery and the addition of class pool information.
For bytecode engineering, HeapDL’s context heap enricher uses the ASM framework [Bruneton
et al. 2002]Ðpopular for tools that manipulate or analyze Java bytecode.

Our runtimes are established on an idle machine with an Intel Xeon E5-2687W v4 3.00GHz with
up to 512 GB of RAM. For static analysis with Doop, we used the PA-datalog engine, a publicly
available, stripped-down version of the commercial LogicBlox Datalog engine. We proceed in the
next sections with the experiments using popular Android applications, and JVM experiments on
the DaCapo 9.12-Bach benchmark suite [Blackburn et al. 2006].

5.1 Android

The first experiment compares the results of static analysis enhanced with HeapDL output vs.
plain, unenhanced context-insensitive static analysis. We test a diverse set of Android benchmarks,
chosen to be realistic applications: Chrome, Instagram, S Photo Editor, Pinterest, Google Translate,
and Android Terminal Emulator.
We use Android 7.1, since it has support for heap profiling using the same HPROF format as

OpenJDK. We recompiled Android from sources and produced two artifacts: (a) a JAR containing all
bytecode corresponding to the Android Java API and (b) an accompanying Android virtual device
image that can be loaded to the Android emulator. The reason that we generated a custom JAR
for the Android API is that the JAR files that come with the Android SDK are stubs, i.e. they only
contain entry points to the API methods, plus some minimal bytecode. This łfullž JAR was given to
the Doop static analysis as the platform JAR and permits the analysis of the app on top of Android.

To dynamically exercise the applications, we ran our benchmarks in the Android emulator with
the UI/Application Exerciser Monkey tool,2 which generates random input events, to simulate
actual use of each app. We performed at least 1024 random events. For some applications, we
conducted two runs: one to supply log-in credentials manually, and another (after application
shutdown and restart) to run with Monkey. The heap dump was taken at the exact point Monkey
sent the last event. The statistical variability in Android is very low and is eclipsed by other factors
such as the number of random events and user input.

Compared to later experiments, there are a few features of the Android experiment to remember:
(1) the baseline is a static analysis with static support for Android features but with no dynamic
informationÐlater experiments will compare with the Tamiflex tool, which currently is JVM-only;
(2) there is no heap enrichment on the Android platform.

The impact of HeapDL on the static analysis results (call-graph edges and heap size) is shown in
Figures 9 and 10. Every benchmark is run in four configurations: no heap information or reflection
support (base), HeapDL information (+heap), static reflection support (refl), and both reflection
support and HeapDL information (refl+heap). Reflection support is the łclassic-reflectionž mode of
Doop, which analyzes reflective features and reasons about strings used for reflection purposes.

As can be seen, the increase in all metrics due to the use of heap snapshots is drastic. Many tens
of percent of extra call-graph edges and an equal or larger increase in static heap size occur. The

2https://developer.android.com/studio/test/monkey.html
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androidterm

chrome

gtranslate

instagram

pinterest

sphotoedit

refl+heap

refl

+heap

base

Call Graph Edges (Android)

85,722

142,266 (+65.96%)

99,506

151,162 (+51.91%)

177,754

260,376 (+46.48%)

213,229

291,296 (+36.61%)

230,636

319,626 (+38.58%)

284,819

368,365 (+29.33%)

253,700

407,742 (+60.72%)

320,435

448,001 (+39.81%)

293,701

475,309 (+61.83%)

481,291

576,462 (+19.77%)

277,043

415,196 (+49.87%)

350,225

480,992 (+37.34%)

0 600,000

Fig. 9. Android benchmarks: number of call-graph edges reported by the static analysis, with and without

HeapDL assistance, with and without static reflection analysis.

androidterm

chrome

gtranslate

instagram

pinterest

sphotoedit

refl+heap

refl

+heap

base

Heapsize (Android)

3,521,937

10,334,595 (+193.43%)

7,539,254

20,638,657 (+173.75%)

35,097,645

54,798,068 (+56.13%)

63,873,198

109,808,628 (+71.92%)

24,481,064

38,083,198 (+55.56%)

58,088,095

80,243,398 (+38.14%)

69,796,619

117,588,227 (+68.47%)

117,365,778

199,347,639 (+69.85%)

80,034,974

127,880,868 (+59.78%)

208,436,340

334,460,340 (+60.46%)

15,572,341

34,922,977 (+124.26%)

55,361,213

101,037,455 (+82.51%)

0 340,000,000

Fig. 10. Android benchmarks: heap size reported by the static analysis, with and without HeapDL assistance,

with and without static reflection analysis.
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Analysis Running Times (Android)

273
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1,294 (+61.35%)
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4,271 (+60.56%)

1,113

2,372 (+113.12%)

3,227

6,135 (+90.11%)
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2,686 (+107.25%)

6,873

9,711 (+41.29%)
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1,707 (+79.31%)

2,838

4,946 (+74.28%)

0 10,000

Fig. 11. Analysis times for Android benchmarks.

static analysis reach expands significantlyÐthe static analysis on its own is not enough to discover
this extra information, strongly suggesting unsoundness. Even with static reflection analysis, the
increase with HeapDL input is large. All metrics support the position that HeapDL is effective
(RQ.A1-3). (The Android platform does not easily permit dynamic instrumentation to see if the
extra static analysis results really capture valid dynamic behaviorsÐour later experiments will
address this.)

Figure 11 shows the running time of the static analysis when enhanced with HeapDL input. The
running time increase (typically in the 60-80% range) is commensurate with the increase in overall
analysis reach. Running times remain realistic, considering how much more code is analyzed (as
evident by the extra call-graph edges) and the overall size of the programs involvedÐsome of the
largest Android apps are included in our benchmark set. This suggests that HeapDL is efficient and
does not burden the static analysis disproportionately (RQ.B2).
Regarding the cost of the dynamic analysis (RQ.B1), interestingly, we did not find a significant

overhead when allocation tracking is turned on in Android. Measuring application start-up, runtime,
shutdown times, and their sum, with and without allocation tracking, we observed a significant
variance (up to % 10) between runs of the same benchmark, but without any strong correlation
with allocation tracking being enabled. This could be due to the interactive nature of most of
the tested applications,3 or to other overheads of the system. We investigated this topic further
by hand-crafting an Android application that performs no I/O. Under this synthetic scenario we
observed a worst-case 48% overhead of heap snapshots with allocation tracking. It is telling that
we had to resort to a synthetic benchmark to obtain a measurable overhead.

3We had to set a delay of 2ms in the Monkey tool to avoid losing events. If a mere 2ms interaction time is sufficient to hide

profiling slowdown, it can be well argued that there is no perceptible slowdown in the first place.
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5.2 JVM Benchmarks: DaCapo

Our second experiment examines the standard DaCapo 2009 Java benchmark suite on the JVM.4

We omitted a priori the Tomcat and Tradesoap benchmarks, to ease the engineering requirements
on our experimental setup. These benchmarks perform various kinds of I/O, spawn webservers or
other processes and are generally less ameanable to profiling5.
This experiment uses as baseline not a plain static analysis (as in the previous section) but an

analysis enhanced with dynamic reflection information, produced by the state-of-the-art Tamiflex
tool. This is a key comparison for HeapDL. Our claim has been that heap snapshots are an excellent
way to compensate for the unsoundness of static analysis, in a more complete way than merely
recording specific program actions (such as reflection calls).

The experiment is conducted with the heap enricher enabled, so that the full dynamic call graph
is registered (using the EdgeCtx objects), however the context information is ignored since the static
analysis is carried out context-insensitively. Also, the enricher for capturing all dynamically loaded
classes (Section 3.1) is not enabled, to avoid clouding the results: that enricher does not affect the
HeapDL performance much on the DaCapo benchmarks and we want all analyses (static+Tamiflex
vs. +HeapDL) to run on the exact same bytecode.

The heap dump is taken on JVM exit. The application is instrumented by the heap-enhancing
agent to persist all relevant objects allocated by the same application. There is negligible statistical
variability in the Dacapo benchmarks, since the harness is deterministic in the way it exercises the
application.
Figures 12 and 13 show the number of call-graph edges and heap size for the benchmarks. The

two bars are for the baseline static analysis (Doop with Tamiflex input) with and without the
HeapDL input. We used the łdefaultž input size of the DaCapo benchmarks for dynamic analysis.
As can be seen, the increase in analysis metrics is substantial, typically at over-20% more call-

graph edges (median: 24%), and even higher for the size of the static heap (median increase: 86%).
The call-graph edge increase is smaller than on the Android setting, exactly as would be expected,
since the Tamiflex input addresses some of the unsoundness of the static analysis. Tamiflex is still
missing many call-graph edges, however. (We note that the increase for the batik benchmark is
an outlier because Tamiflex misses a key call-graph edge with the default input. Surprisingly, it
observes it with the łsmallž input of the benchmarks. Thus, one should not consider batik to be
representative in terms of soundness, although it is still informative in terms of other metrics.)
Therefore, on RQ.A, the experiment appears to strongly confirm that HeapDL is effective and
improves on the state of the art.

Figure 14 shows that the increase in analysis reach comes with modest increases in static analysis
cost (RQ.B2). (We even see a surprising reduction, for tradebeans. We have not yet managed to
explain this, but it is a repeatable effect. We speculate that it is merely due to the analysis reaching
fixpoint a lot earlier due to the many initial dynamic call-graph edges.)

The extra time taken by static analysis when enhanced with HeapDL inputs is a direct effect of
enhancing the coverage of the analysis. The information exposed by HeapDL makes the analysis
infer more reachable code, which in turn makes the analysis run longer. Indeed, the information
(e.g., all call-graph edges, not just new ones) that the static analysis receives from HeapDL is a
small proportion of the extra information that the static analysis ends up inferring. This can be
seen in Figure 15, which plots the dynamic call-graph edges produced by HeapDL against the
(earlier-reported) call-graph edges inferred by the static analysis with and without HeapDL. As can

4We used version 1.8u131 of the Oracle JDK.
5http://sourceforge.net/p/dacapobench/bugs/70/
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Fig. 12. Call-graph size for DaCapo benchmarks. The figure is truncated for readability.

be seen, the increase in static call-graph edges is typically 3-5x of the dynamic call-graph edges
that HeapDL provides.

On the other hand, the run-time cost (RQ.B1) is much higher than on the Android platform. We
have found that JVM-profiling with allocation tracking on the DaCapo benchmarks incurs a 20-50x
slowdown (median: 39x). This slowdown is incurred for a standard configuration of a reference
profiler tool, so it is in line with overheads that programmers observe during realistic profiling
tasks. Our optional heap enriching agent compounds this cost with a further 1.1-10x slowdown
(median: 1.8x), for a total slowdown that can approach two-to-three orders of magnitude!

Thus, currently HeapDL pays a performance penalty on the dynamic execution in order to yield
inputs for enhanced static analysis. We expect that this cost is acceptable in the majority of cases.
Dynamic instrumentation often incurs high costs on high-performance platforms and the overhead
does not prohibit the actual execution of realistic programs, when the stakes are as high as static
(i.e., all-input) analysis coverage.

We investigated tuning options in order to minimize the profiling overhead. With a bounded
depth of 6 for captured stack traces, the analysis results are nearly identical to those reported
in our full experiments, yet the overhead of HPROF profiling drops to a median of 21x (instead
of 39x). For future development, there are several alternative profiler implementations that can
potentially yield lower overheads. These include the HPROF agent of the IBM JDK [IBM 2017], the
YourKit profiler [YourKit 2017], the Java Flight Recorder [Oracle 2014a], and the Java VisualVM
profiler [Oracle 2016c]. It is a strength of the approach that profiling is done externally, by third-party
tools.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:20 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

avrora

batik

eclipse

h2

jython

luindex

lusearch

pmd

sunflow

tradebeans

xalan

+heap

base

Heapsize (DaCapo)

251,146

410,288 (+63.37%)

115,719

2,172,170 (+1777.11%)

6,179,818

7,944,698 (+28.56%)

126,024

555,824 (+341.05%)

9,924,568

20,506,123 (+106.62%)

135,694

252,939 (+86.40%)

139,045

248,916 (+79.02%)

199,082

452,510 (+127.30%)

273,604

506,375 (+85.08%)

154,818

952,352 (+515.14%)

278,000

599,105 (+115.51%)

0 2,200,000

Fig. 13. Heap size for DaCapo benchmarks. The figure is truncated for readability.

5.3 Quantifying Coverage Increase

A highly meaningful test for mechanisms that enhance the coverage of an analysis is to measure
their ability to anticipate unseen behaviors. We saw in Figure 12 that HeapDL enhances a static
analysis to explore a lot more call-graph edges. But does this translate into improved coverage of
behaviors that truly arise?
In order to measure the coverage increase (RQ.C) that HeapDL enables, we compare the recall

of the dynamic call-graph edges for DaCapo executions under the łdefaultž input size, when the
static analysis has only seen the dynamic behavior of the łsmallž input size. That is, we first run the
benchmarks with the łsmallž workload (for both the Tamiflex tool and HeapDL). This run serves
to produce inputs for the static analysis, which analyzes the program and produces a static call
graph. We then examine the recall of this static call graph, against the dynamic call graph arising
for an execution with the łdefaultž benchmark input.6 The setup of the experiment is otherwise
identical as in the earlier DaCapo benchmark experiment, i.e., we do not enable the enricher for
dynamically-loaded code, so that both Tamiflex and HeapDL operate on the same bytecode.
Figure 16 shows the results of the recall comparison. As can be seen, HeapDL results in a

significant increase in call-graph edge recall: the static analysis successfully infers almost all of
the dynamic call-graph edges in the łdefaultž execution, which it has never seen. In contrast,
the Tamiflex techniques alone are not enough to achieve similar coverage: more than 20% of the
dynamic call-graph edges from differnt runs are missed. The median recall for the baseline (static

6We sought to perform the same experiment with the łdefaultž vs. łlargež DaCapo inputs, but this is not available for the

full set of benchmarks, and others fail for the supplied łlargež input, without any instrumentation.
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Fig. 14. Analysis times for DaCapo benchmarks. The figure is truncated for readability.
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Fig. 15. Dynamic call-graph edges vs. increase in static call-graph edges. The figure is truncated for readability.
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Fig. 16. Coverage/Recall for DaCapo benchmarks.

analysis + Tamiflex input) is 76.9%, while it rises to 99.5% when HeapDL input is added. Thus, the
experiment suggests that the answer to RQ.C is affirmative: HeapDL increases coverage of actual
program behavior, compared to a state-of-the-art tool.

5.4 Discussion

Although we have not quantitatively classified the sources of unsoundness in our experiments, we
can share qualitative insights from a manual inspection effort. Furthermore, we also show that the
additional coverage gained by using HeapDL directly translates to benefits in client analyses.

5.4.1 Unsoundness in Static Analysis. Many of the dynamic edges missed by the static analysis
relate to low-level code. This code, however, often translates into unsoundness when analyzing the
application itself. Our earlier figures 12, 13, and 16 have 4 outliers among the DaCapo benchmarks:
batik, h2, tradebeans, and xalan. All four show significant increase in the amount of application code
found to be reachable by the analysis. Without HeapDL input, the static analysis often discovered
less than 10% of the code of these benchmarks to be reachable. On the tradebeans benchmark, a
substantial part of the edges that are missed involve typical web server functionality, e.g., encryption,
security, command-line parsing, etc.
An interesting observation is that the DaCapo benchmarks are older, so they do not use the

invokedynamic instruction (used, e.g., in the translation of lambda expressions). However, when
analyzed in conjunction with a Java 8 library, such instructions arise: the benchmarks generate
anonymous classes to be called via invokedynamic due to the automatic łSAM conversionž. In
new JDKs, all single-abstract-method (SAM) types see invocations of their methods transformed
into invokedynamic calls [Goetz 2010; Oracle 2014b]. We have observed this arise in at least three
DaCapo benchmarks. Heap snapshots successfully compensate for this semantic omission.
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In the Android setting, an example of what we gain from heap data is the discovery of many call
graph edges to the graphical subsystem. Apps in Android set up their user interface using a łlayout
inflaterž, which uses reflection via external XML files to set up the GUI elements of the app. We
found that such code is hostile to classic static analysis (even with reflection analysis or Tamiflex
information).

5.4.2 Benefits for Client Analyses. HeapDL’s effect of enhancing the call graph and reachable
method coverage of static analyzers directly translates to benefits for most conceivable client
analyses. For instance, for the Instagram application on Android, a static taint analyzer [Grech
and Smaragdakis 2017] flags 2.6x more suspicious information flows when enhanced with HeapDL
input. This is a higher-than-proportional increase in possible vulnerabilities flagged, relative to the
metrics of Figures 9 and 10 on Instagram (1.6x call-graph edges, 1.7x heap size increase).

This effect is hardly surprising. At a high level, a larger coverage of reachable methods by a static
analysis can easily translate into a larger number of vulnerabilities detected, e.g., vulnerabilities
may lurk in the code that is not covered by the client analysis. At a more detailed level, a larger
coverage of call-graph edges yields substantial increase in the behaviors covered by considering
more combinations of events. For instance, in a taint analyzer, a taint source, sink, or taint transfer
method is often represented as a method invocation. If the underlying analysis builds a larger,
more representative call graph, the numbers of all three elements (sources, sinks, and taint transfer
methods) will increase. Since an information flow consists of combinations of such events, the
increase will be magnified.

6 RELATED WORK

The general pattern of adding dynamic analysis information to address cases that are hard for static
analysis has a time-honored past, with approaches such as dynamic symbolic execution [Godefroid
et al. 2005; Sen et al. 2005] and environment models in model checking. For example Mercer
and Jones [2005] present a model checking approach that uses the GNU debugger to establish
cycle-accurate effects of the compiled program elements under different backends and processors.
What distinguishes our approach is the use of heap snapshots with allocation tracking, as well as
the emphasis on the information (e.g., dynamically-loaded code, object-sensitive contexts) that is
particularly valuable for a whole-program static analysis.

Li et al. [2017] show how to combine dynamic symbolic execution with subtype polymorphism
in Java to resolve the targets of method invocations. Their approach improves soundness relative
to plain dynamic symbolic execution but does not address the soundness issues relative to native
code, heterogeneous applications, or invokedynamic.
Hirzel et al. [2004] show one of the first works that consider runtime monitoring so as to

obtain information for state-of-the-art Java program analysis techniques. Concretely, they extend
Andersen’s pointer analysis algorithm to an online setting, which enables it to handle dynamic class
loading, reflection and native code (through the disciplined JNI interface). The system observes
such events and re-runs the analysis with these observations taken into account. The approach is
conceptually closely related to ours, since it targets the same kinds of analyses (whole-program
points-to and call-graph). However, the Hirzel et al. approach is quite different in its characteristics:
it requires full control of the runtime environment; it applies only to analyses that are inexpensive
enough to re-run regularly; it does not separate the dynamic information from the static analysis; it
relies on capturing events and not effects (e.g., it will not intercept low-level heap updates through
unsafe APIs).

Dynamic class loading with reflection is a hard problem for static analysis: Landman et al. [2017]
note that there are still soundness problems in the handling of dynamic proxies or reflection,
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even with state-of-the-art techniques. Our approach partly addresses the shortcomings of these
past techniques by using run-time heap information to detect behaviors that would otherwise be
missed. There are also techniques that attempt to statically analyze either dynamic class loading or
reflection. For example, Yoshiura and Wei [2014] do static data race detection in the presence of
dynamic class loading (an analysis that is not fully automatic as it requires manual handling of
loops) and Li et al. [2015] improve the static handling of reflection, but do not fully handle native
methods, invokedynamic, or heterogeneous code.

Inspecting a program’s state prior to static analysis is a strategy sometimes employed by hybrid
static analysers for dynamically typed languages. For instance, RPython [Ancona et al. 2007] lazily
inspects most of the global state, and combines dynamic and static type information to perform a
flow-sensitive type inference, before generating optimized code. A similar implementation strategy
is used in preemptive type checking [Grech et al. 2013]. On the other hand, the use of profiling on
hard to analyse features is used in PRuby [Furr et al. 2009], particularly on Ruby’s eval and other
unsafe functions to infer possible side effects of these.

The Tamiflex tool [Bodden et al. 2011] (extensively discussed earlier) employs a ‘Play-out’ agent to
log runtime reflective calls and classes loaded via custom class loaders or on-the-fly code generation.
A secondary tool component called the ’Booster’ then enriches the respective classes, at the point
where the reflective calls are made, by inserting regular method calls that materialize the reflective
calls, thus making them detectable by standard static analyzers. The Booster component also
instruments runtime checks that warn the user when the analyzed program executes reflective
calls that were not executed in the previous runs (and may, thus, be a source of unsoundness). The
Tamiflex toolchain also provides support for inserting offline-transformed classes into a running
program via a ‘Play-in’ agent. All such functionality would be interesting to incorporate in the
HeapDL tool in the future.

Our approach is certainly not the first to recognize the high value of heap snapshots. Specifically
in Java, there have been several research uses of HPROF dataÐe.g., most directly for different kinds
of heap visualization [Aftandilian et al. 2010; Reiss 2009]. Other dynamic analyses use heap profiling
data to check aliasing properties [Potanin et al. 2004], analyze synchronization performance [Hofer
et al. 2015], generate software birthmarks [Chan et al. 2011], or diagnose memory leaks [Maxwell
et al. 2010].

The problem of static analysis unsoundness is particularly acute for Android frameworks, since
they make heavy use of reflection. Droidel [Blackshear et al. 2015] simulates some uses of reflection
in Android and replaces reflective behavior with static calls to generated code (stubs); these can
then be processed using off-the-shelf analysis tools for Android apps (e.g., Soot and WALA [Fink
2015]) that would otherwise miss these call-graph edges. Their approach is however not fully
automated and requires manual code instrumentation for explicating reflection. In HybriDroid [Lee
et al. 2016], dynamic analysis is not employed to model the effects of foreign code. Instead, the
interaction between Android and JavaScript code is handled explicitly. This means that standard
WebView browser component events are explicitly modeled and JavaScript code running in this is
analyzed together with the application.

Zhauniarovich et al. [2015] observe that an łextensive amount of Android apps relies on dynamic
code update featuresž and offer a combination of static and dynamic approaches for security analyses
on Android. In particular, the dynamic part of their approach is using a modified Android operating
system that runs the application to be analyzed. In comparison, our work differs in that it is non-
intrusive. We do not need a modified version of Android to take heap snapshots (although we built
a platform image from scratch to have a tightly controlled environment for benchmarks in this
paper).
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7 CONCLUSIONS

We presented an approach to enhancing the coverage of a static analysis by employing dynamic
information. Although the general pattern for such an enhancement is well-established, our tech-
niques are interesting in their specifics. We use modern heap-snapshot and allocation-tracking
technology provided by profiling APIs in mainstream platforms; we export dynamic information
in a format suitable for whole-program static analysis, such as call-graph analysis and pointer
analysis of a global heap; we enrich the heap for various purposes, including maintaining context
information that the static analysis expects. Our approach is embodied in the HeapDL tool, which
we show can achieve significant increases in analysis coverage, compared to the closest baselines.

We believe that heap snapshots are the right tool for addressing unsoundness shortcomings of
static analyses. Heap snapshots offer the enormous advantage of being non-intrusive: there is no
need to instrument code (except for purposes of getting optional extra information, as in heap
enrichment) or, generally, to watch for specific program actions. Instead, a wealth of information on
a program’s behavior is readily available by observing the effects of the program on the heap and
snapshot call-graphs. Such program effects can capture semantic elements of even the hardest-to-
analyze code: native actions, dynamically generated code, and all sorts of unsupported functionality.
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