
uting

n
ting.
as a
ica-
dif-

ition

bil-
ata-
ware

ifferent
f the
out
is a
J-Orchestra: Automatic Java Application Partitioning

Eli Tilevich and Yannis Smaragdakis
Center for Experimental Research in Comp. Science (CERCS), College of Comp

Georgia Institute of Technology, Atlanta, GA 30332
{tilevich, yannis}@cc.gatech.edu

http://j-orchestra.org

Abstract. J-Orchestra is an automatic partitioning system for Java programs. J-
Orchestra takes as input Java applications in bytecode format and transforms
them into distributed applications, running on distinct Java Virtual Machines. To
accomplish such automatic partitioning, J-Orchestra uses bytecode rewriting to
substitute method calls with remote method calls, direct object references with
proxy references, etc. Using J-Orchestra does not require great sophistication in
distributed system methodology—the user only has to specify the network loca-
tion of various hardware and software resources and their corresponding appli-
cation classes. J-Orchestra has significant generality, flexibility, and degree of
automation advantages compared to previous work on automatic partitioning.
For instance, J-Orchestra can correctly partition almost any pure Java program,
allowing any application object to be placed on any machine, regardless of how
application objects access each other and Java system objects. This power is due
to the novel way that J-Orchestra deals with unmodifiable code (e.g., native code
in the Java system classes). Additionally, J-Orchestra offers support for object
migration and run-time optimizations, like the lazy creation of distributed
objects.

We have used J-Orchestra to successfully partition several realistic applications
including a command line shell, a ray tracer, and several applications with native
dependencies (sound, graphics).

1 Introduction

Application partitioningis the task of breaking up the functionality of an applicatio
into distinct entities that can operate independently, usually in a distributed set
Application partitioning has been advocated strongly in the computing press [11]
way to use resources efficiently. Traditional partitioning entails re-coding the appl
tion functionality to use a middleware mechanism for communication between the
ferent entities. In this paper, we present anautomatic partitioning systemfor Java
applications. Our system, called J-Orchestra, utilizes compiler technology to part
existing applications without manual editing of the application source code.

Automatic partitioning aims to satisfy functional constraints (e.g., resource availa
ity). For instance, an application may be getting input from sensors, storing it in a d
base, processing it, and presenting the results on a graphical screen. All four hard
resources (sensors, database, fast processor, graphical screen) may be on d
machines. Indeed, the configuration may change several times in the lifetime o
application. Automatic partitioning can accommodate such requirements with
needing to hand-modify the application source code. Thus, automatic partitioning

t, X-
ith

exi-
ini-
ows
ics on

de to
mote
to

ior as
put
are
naly-
.

neral
m of
ode.

irect
This

ly of
ode,
g”
s are

the
lica-
and
on.)
ative
ation,
li-

with
ys-

ation,

. We
ches-
e J-

ate the
sophisticated alternative to input-output re-direction protocols (Java servlets, telne
Windows [15]). Automatic partitioning can do whatever these technologies do, w
the additional advantage that the partitioning of the application is completely fl
ble—different parts of the application can run on different machines in order to m
mize network traffic or reduce server load. For instance, instead of using X-Wind
to send graphics over the network, one can keep the code generating the graph
the same site as the graphics hardware.

J-Orchestra operates at the Java bytecode level and rewrites the application co
replace local data exchange (function calls, data sharing through pointers) with re
communication (remote function calls through Java RMI [18], indirect pointers
mobile objects). The resulting application is guaranteed to have the same behav
the original one (with a few, well-identified exceptions). J-Orchestra receives in
from the user specifying the network locations of various hardware and softw
resources and the code using them directly. A separate profiling phase and static a
sis are used to automatically compute a partitioning that minimizes network traffic

Although the significance of J-Orchestra may appear Java-specific, there is a ge
conceptual problem that J-Orchestra is the first system to solve. This is the proble
supporting transparent reference indirection in the presence of unmodifiable c
More specifically, J-Orchestra is one of many systems that work by changing all d
references to objects into indirect references (i.e., references to proxy objects).
approach is hard to implement transparently when the program consists part
unmodifiable code. We show that J-Orchestra can “work around” unmodifiable c
ensuring that it is clearly isolated from modifiable code by dynamically “wrappin
direct references to make them indirect (and vice versa), when the reference
passed from unmodifiable to modifiable code (and vice versa).

The result of solving the problems with unmodifiable code is that J-Orchestra is
first automatic partitioning system that imposes no partitioning constraints on app
tion code. (We make a clear distinction between “automatic partitioning” systems
general “Distributed Shared Memory” mechanisms in our related work discussi
Unlike previous systems (e.g., Addistant [19]—the most mature and closest altern
to J-Orchestra in the design space) J-Orchestra can partition any Java applic
allowing anyapplication objectto be placed on any machine, regardless of how app
cation objects interact among them and with system objects. Anysystem objectcan be
remotely accessed from anywhere in the network, although it has to be co-located
system objects that may potentially reference it. (The terms “application” and “s
tem” objects roughly correspond to instances of regular classes of a Java applic
and of Java system classes with native dependencies, respectively.)

In this paper, we present the main elements of the J-Orchestra rewrite engine
describe the J-Orchestra rewrite algorithm, discuss its power and detail how J-Or
tra deals with various features of the Java language. Finally, we examine som
Orchestra optimizations and present performance measurements that demonstr
advantage of J-Orchestra over input/output redirection with X-Windows.

er-
ded
ay

a sys-
that

ility
f an
a

e
user
sses,
jects
ation.
-
lasses

ation.

tion
or-
encies
cor-

s: a

en-
2 System Overview

We will give here a high-level overview of the operation of J-Orchestra from the p
spective of a user (see Fig. 1). Many important details are elided—they will be ad
in the next few sections. Some low-level details will be left unspecified as they m
soon change. For instance, currently the interaction of the user and the J-Orchestr
tem is done using scripts and XML-based configuration files, but a complete GUI
will hide many of these details will be available by the time of publication.

The user interaction with the J-Orchestra system consists of specifying the mob
properties and location of application objects. J-Orchestra converts all objects o
application intoremote-capableobjects—i.e., objects that can be accessed from
remote site. Remote-capable objects can be eitheranchored(i.e., they cannot move
from their location) ormobile (i.e., they can migrate at will). For every class in th
original application, or Java system class potentially used by application code, the
can specify whether the class instances will be mobile or anchored. For mobile cla
the user needs to also describe a migration policy—a specification of when the ob
should migrate and how. For anchored classes, the user needs to specify their loc
Using this input, theJ-Orchestra translatormodifies the original application and sys
tem bytecode, creates new binary packages, produces source code for helper c
(proxies, etc.), compiles that source code, and creates the final distributed applic

Specifying the properties (anchored or mobile, migration policy, etc.) of an applica
or system class is not a trivial task. A wrong choice may yield an inefficient or inc
rect distributed application. For instance, many system classes have interdepend
so that they all need to be anchored on the same site for the application to work
rectly. To ensure a correct and efficient partitioning, J-Orchestra offers two tool
profiler and aclassifier (Fig. 1).

The profiler is the simpler of the two: it reports to the user statistics on the interdep

User

J-Orchestra
classifier

J-Orchestra
profiler

original
bytecodes

.class

partitioning
info

J-Orchestra
translator

.class .java

partitioned
application
(bytecode,
source code)

Fig. 1. An overview of the J-Orchestra partitioning process

this
here.

filing

ss of
encies
a is
a sys-
es that
clude
nces
tive
akes
ey can
asses
til all

algo-

bjects
ginal

ods
thod
sev-

ssing
to
ces-
every

tried

s well
ct

bject

For
dencies of various classes based on (off-line) profiled runs of the application. With
information, the user can decide which classes should be anchored together and w
J-Orchestra includes heuristics that compute a good partitioning based on pro
data—the user can run these heuristics and override the result at will.

The J-Orchestra classification algorithm is responsible for ensuring the correctne
the user-chosen partitioning. The classifier analyzes classes to find any depend
that can prevent them from being fully mobile. One of the novelties of J-Orchestr
that regular application classes can almost always be mobile. Nevertheless, Jav
tem classes, as well as some kinds of application classes, may have dependenci
force them to be anchored. As discussed in Section 4, example dependencies in
an implementation in native (i.e., platform-specific) code, possible access to insta
of the class from native code, inheriting from a class that is implemented in na
code, etc. The interaction of the user with the classifier is simple: the classifier t
one or more classes and their desired locations as input and computes whether th
be mobile and, if not, whether the suggested locations are legal and what other cl
should be co-anchored on the same sites. The user interacts with the classifier un
system classes have been anchored correctly.

In the next sections, we describe the J-Orchestra classification and translation
rithms in detail.

3 Rewrite Strategy Overview

3.1 Main Insights

J-Orchestra creates an abstraction of shared memory by allowing references to o
on remote JVMs. That is, the J-Orchestra rewrite converts all references in the ori
application intoindirect references—i.e., references toproxy objects. The proxy object
hides the details of whether the actual object is local or remote. If remote meth
need to be invoked, the proxy object will be responsible for propagating the me
call over the network. Turning every reference into an indirect reference implies
eral changes to application code: for instance, allnew statements have to be rewritten
to first create a proxy object and return it, an object has to be prevented from pa
direct references to itself (this) to other objects, etc. If other objects need to refer
data fields of a rewritten object directly, the code needs to be rewritten to invoke ac
sor and mutator methods, instead. Such methods are generated automatically for
piece of data in application classes. For instance, if the original application code
to increment a field of a potentially remote object directly, as ino1.a_field++ , the
code will have to change intoo1.set_a_field(o1.get_a_field()+1) . (This
rewrite will actually occur at the bytecode level.)

The above indirect reference techniques are not novel (e.g., see JavaParty [8], a
as the implementation of middleware like Java RMI [18]). The problem with indire
reference techniques, however, is that they do not work well when the remote o
and the client objects are implemented inunmodifiable code. Typically, code is
unmodifiable because it is native code—i.e., code in platform specific binary form.

gory.
lds,
f J-
odifi-

g with
olu-
will

ble,
irec-
d the
sys-
ote

but
the
not

t be
r to

ble
here
, the
ctly,
le
each
ects

oes
ifi-

sys-

from
nces

them
sy to
able
de.

to be
s to
instance, the implementation of many Java system classes falls in this cate
Unmodifiable code may be pre-compiled to refer directly to another object’s fie
thus rendering the proxy indirection invalid. One of the major novel elements o
Orchestra is the use of indirect reference techniques even in the presence of unm
able code.

3.2 Handling Unmodifiable Code

To see the issues involved, let us examine some possible approaches to dealin
unmodifiable code. We will restrict our attention to Java but the problem (and our s
tion) is general: pre-compiled native code that accesses the object layout directly
cause problems to indirect reference approaches in any setting.

• If the client code (i.e., holder of a reference) of a remote object is not modifia
but the code of the remote object is modifiable, then we can use “name ind
tion”: the proxy class can assume the name of the original remote class, an
remote class can be renamed. This is the “replace” approach of the Addistant
tem [19]. The problem is that the client may expect to access fields of the rem
object directly. In this case, the approach breaks.

• If the client code (i.e., holder of a reference) of a remote object is modifiable
the code of the remote object is not, then we can change all clients to refer to
proxy. This is the “rename” approach of the Addistant system. This case does
present any problems, but note that the Addistant approach is “all-or-none”.All
clients of the unmodifiable class must be modifiable, or references canno
freely passed around (since one client will refer to a proxy object and anothe
the object directly).

• If the client code (i.e., holder of a reference) of a remote object is not modifia
and the code of the remote object is also not modifiable, no solution exists. T
is no way to replace direct references with indirect references. Nevertheless
key observation is that unmodifiable clients can refer to the remote object dire
while modifiable clients refer to it indirectly. In this way, although unmodifiab
objects cannot be placed on different network sites when they reference
other, modifiable objects can be on a different site than the unmodifiable obj
that they reference.This is the approach that J-Orchestra follows.A direct conse-
quence is that (unlike the Addistant rewrite) the semantics of the application d
not affect its ability to be partitioned. An application object (instance of a mod
able class) can be placed anywhere on the network, regardless of which Java
tem objects it accesses and how.

For this approach to work, it must be possible to create an indirect reference
a direct one and vice versa, at application run-time. The reason is that refere
can be passed from modifiable to unmodifiable code and vice versa by using
as arguments or results of a method call. Fortunately, this conversion is ea
handle since all method calls are done through proxies. Proxies for unmodifi
classes are the only way to refer to unmodifiable objects from modifiable co
When a method of such a proxy is called, the reference arguments need
unwrappedbefore the call is propagated to the target object. Unwrapping refer

uch

ility.
rans-
va”
ep-
efault

es
they

. As
obile
either

er an
the

able
lation
deter-

eir
ss

tially
eems

. The
ws.

de

d is
stem
creating a direct reference from an indirect one. Similarly, when a method of s
a proxy returns a reference, that reference needs to bewrapped: a new indirect ref-
erence (i.e., reference to a proxy object) is created and returned instead.

A consequence of the J-Orchestra rewrite algorithm is that is supports object mob
If an object can only be referenced through proxies, then its location can change t
parently at run-time. Thus, for instance, regular application objects in a “pure Ja
application can migrate freely to other sites during application execution. (An exc
tion is the case of application classes that extend system classes other than the d
subtyping root,java.lang.Object —see Section 4.2.2.) In contrast, many instanc
of Java system classes are remotely accessible but typically cannot migrate, as
may be accessed directly by native code.

4 Rewrite Mechanism

In this section, we discuss in concrete detail the J-Orchestra rewrite model
described in Section 2, J-Orchestra distinguishes between anchored and m
classes. Unmodifiable classes have to be anchored, but modifiable classes can be
anchored or mobile. The J-Orchestra mechanisms ofclassificationandtranslationare
entirely separate. The purpose of the J-Orchestra classifier is to determine wheth
object should be anchored (and where) or mobile. This algorithm could change in
future, while the translation mechanism for mobile classes, anchored unmodifi
classes, and anchored modifiable classes stays the same. Similarly, the trans
mechanism for the three categories of classes can change, even if the way we
mine the category of a class remains the same.

In the following sections, we will blur the distinction between classes and th
instances when the meaning is clear from context. For instance, we write “claA

refers to classB” to mean that an instance ofA may hold a reference to an instance ofB.

4.1 Classification

Classes may have to be anchored if they have native methods or if they may poten
be manipulated by native code. For example, J-Orchestra’s rewrite engine d
java.lang.ThreadGroup anchored because a reference to aThreadGroup can be
passed to the constructor of classjava.lang.Thread , which has native methods.

Fig. 2 shows the different categories in which classes are classified by J-Orchestra
classification criteria for the vast majority of classes can be summarized as follo
(Some exceptions will be discussed individually.)

• Anchored Unmodifiable Classes: A class C is anchored unmodifiable if it has
native methods, or references toC objects can be passed between modifiable co
and an anchored unmodifiable classU. In the latter case, classesCandUneed to be
anchored on the same network site.

For simplicity, we assume in this paper that the application to be partitione
written in pure Java (i.e., the only access to native code is inside Java sy

an be
tfor-

than
their

.

ve
stem
ile, as
ored
ely in
enta-

and
an be

ystem

n
obile
or

he
lasses
nta-

s are

r an
asses

be
classes). Thus, application classes are modifiable—only system classes c
unmodifiable. This is the standard usage scenario for J-Orchestra. It is straigh

ward to generalize our observations to applications that include native code.1

• Anchored Modifiable Classes: A class is anchored modifiable if it is a modifiable
application class that extends an anchored unmodifiable class (other
java.lang.Object). These classes need to be anchored on the same site as
superclasses.

Additionally, a modifiable class may be anchored by choice (see Section 5.1)

• Mobile Classes: Mobile classes are all classes that do not fall in either of the abo
two categories. All classes in a pure Java application that do not extend sy
classes are mobile. Note, however, that Java system classes can also be mob
long as they do not call native code and they cannot be passed to/from anch
system classes. In this case, instances of the system class are used entir
“application space” and are never passed to unmodifiable code. The implem
tion of such classes can be replicated in a different (non-system) package
application code can be rewritten to refer to the new class. The system class c
treated exactly like a regular application class using this approach.

Note that static inspection can conservatively guarantee that references to a s
classC never cross the system/application boundary. As long as no references toC or
its superclasses (other thanjava.lang.Object) or to arrays of these types appear i
the signatures of methods in anchored system classes, it is safe to create a m
“application-only” version. (Interface access or access through
java.lang.Object references is safe—a proxy object is indistinguishable from t
original object in these cases.) As a consequence, the categorization of system c
into mobile and anchored is robust with respect to future changes in the impleme
tion of Java library classes—the partitioning remains valid as long as the interface
guaranteed to stay the same.

1. If the application includes native code, our guarantees will need to be adjusted. Fo
extreme example, if native code in a single method accesses fields of all application cl
directly, then no partitioning can be done, since all application classes will need to
anchored on the same site.

system application

anchored
mobile

modifiable
unmodifiable

Fig. 2. The possible categories of classes. Unmodifiable classes need to be
anchored, but both system and application classes can be modifiable and even
modifiable classes may be anchored (by need or by choice). For simplicity, we

ignore the possibility of unmodifiable application classes.

sses
s that

s
ed as
set
ds
y

stem
For
phics
. are

e Java
other

ncide

ation.
while

ation
obile.

irectly
nd its
r way,
stem
none

afely
prop-
More concretely, the J-Orchestra algorithm to compute anchored unmodifiable cla
can be seen in set pseudo-code notation in Fig. 3. This algorithm finds the classe
need to be anchored on the same site as any one of the classes of an initial setA. By
changing the input setA, we adapt this algorithm for several different purpose
throughout J-Orchestra. The auxiliary set routines used in this algorithm are defin
follows: Super(Sub)classes(X)returns the set of all super(sub)classes of classes in
X; MethodArguments(X)returns the set of all argument and return types of all metho
of all classes inX; Constituents(X)returns the set of all constituent types of all arra
types inX. For instance, an array typeT[][] has constituent typesT[] andT.

We should mention that, anchoring system classes together with other related sy
classes typically does not inhibit the meaningful partitioning of system resources.
instance, we have used J-Orchestra to partition several applications so that the gra
display on one machine, while disk processing, sound output, keyboard input, etc
provided on remote computers. This is possible because classes within the sam
system package reference mostly each other and very rarely system classes from
packages. This property means that anchoring group boundaries commonly coi
with package boundaries. For example, all the classes from thejava.awt package can
be anchored on the same machine that handles the user interface part of an applic
This arrangement allows anchored system classes to access each other directly
being remotely accessible by application classes through proxies.

As an advanced technical note, we should mention that less conservative classific
rules can also be applied to guarantee that more system classes can be made m
For instance, if a system class never accesses native code, never has its fields d
referenced by other system classes (i.e., all access is through methods), a
instances are passed from application classes to system classes but not the othe
then the class can be mobile by using a “subtype” approach: a subtype of the sy
class can be created in an application package. The subtype is used as a proxy—
of its original data fields are used. Nevertheless, the subtype object can be s
passed to system code when the supertype is expected. The subtype object itself

Fig. 3. J-Orchestra algorithm to compute anchored unmodifiable classes

compute_co-anchored (A) {
AS := set of all mutable system classes and all array types
A := A ∪ Superclasses(A)∪ Subclasses(A)
do {

AS := AS - A
AArg := MethodArguments(A)
AArg := AArg∪ Superclasses(AArg)∪ Subclasses(AArg)∪ Constituents(AArg)
ArgS := AS∩ AArg
A := A ∪ ArgS

} while (ArgS≠ ∅)
return A

}

long
ra
tion

the
d it
ere
wing

true
do
are

e, data
ately
r, we
been a
.

orting

rans-
eters

-
sing a
etail.

stem
sys-

modify.
r sys-
nding

tation
the
(e.g.,
s
ystem
plica-
agates all method calls to an actual mobile object. This technique is applicable as
as the original system class is notfinal . We already use this technique in J-Orchest
but not automatically—manual intervention is required to enable this transforma
on a case-by-case basis when it seems warranted. A good example is
java.lang.Vector class. Vectors are used very often to pass data around an
would be bad for performance to restrict their mobility: vectors should migrate wh
they are needed. Nevertheless, many graphical applications pass vectors to S
library anchored system classes—e.g., thejavax.swing.table.DefaultTableM-

odel class has methods that expect vectors. All the aforementioned conditions are
for vectors: theVector class has no native methods, classes in the Swing library
not access fields of vector objects directly (only through methods), and vectors
only passed from application to system code, but not the other way. Therefore,Vector

can be safely turned into a mobile class in this case.

For a more accurate determination of whether system classes can be made mobil
flow analysis should be employed. In this way, it can be determined more accur
whether instances of a class flow from application code to system code. So fa
have not needed to exploit such techniques in J-Orchestra—the type system has
powerful enough ally in our effort to determine which objects can be made mobile

4.2 Translation

4.2.1 Anchored Unmodifiable (System) Classes

J-Orchestra does not modify anchored system classes but produces two supp
classes per anchored system class. These are a proxy class and aremote application-
system translator(or justapplication-system translator). A proxy exposes the services
of its anchored class to regular application classes. A remote application-system t
lator enables remote execution and handles the translation of object param

between the application and system layers.2 Both proxy classes and remote applica
tion-system translator classes are produced in source code form and translated u
regular Java compiler. We will now examine each of these supporting classes in d

A proxy is a front-end class that exposes the method interface of the original sy
class. It would be impossible to put a proxy into the same package as the original
tem class: system classes reside in system packages that J-Orchestra does not
Instead, proxies are placed in a different package and have no relationship to thei
tem classes. Proxy naming/package hierarchies are isomorphic to their correspo
system classes. For example, a proxy forjava.lang.Thread is called

2. The existence of a separate application-system translator is an RMI-specific implemen
detail—under different middleware, the translator functionality could be folded inside
proxy. Under RMI, classes need to explicitly declare that they are remotely accessible
by inheriting from classUnicastRemoteObject). Therefore, unmodifiable system classe
cannot be made remotely accessible, but their translator can. Separate application-s
translators simplify our implementation because system classes wrapped with an ap
tion-system translator can be treated the same as application classes.

le
class

ll the
ose

such
for
directly

o the
ecu-
ndles

em
be
ting

ing

efer-
ping is
tem
en that
wrap-

ent

.,
anchored.java.lang.Thread . To make remote execution possible, all modifiab
classes that reference the original system class have to now reference the proxy
instead. This is accomplished by consistently changing the constant pools of a
modifiable binary class files. The following example demonstrates the effect of th
changes as if they were done on the source code level for clarity reasons.

//Original code: client of java.lang.Thread
java.lang.Thread t = new java.lang.Thread (...);
void f (java.lang.Thread t){ t.start (); }

//Modified code
anchored.java.lang.Thread t =

new anchored.java.lang.Thread (...);
void f (anchored.java.lang.Thread t) { t.start (); }

All the object parameters to the methods of a proxy are either immutable classes
asjava.lang.String or other proxies. The rewrite strategy ensures that proxies
anchored system classes do not reference any other anchored system classes
but rather through proxies.

The only data member of an anchored system proxy is an interface reference t
remote application-system translator class. A typical proxy method delegates ex
tion by calling an appropriate method in the remote instance member and then ha
possible remote exceptions. For instance, thesetPriority method for the proxy of
java.lang.Thread is:

public final void setPriority(int arg0){
try { _remoteRef.setPriority (arg0); }
catch (RemoteException e) { e.printStackTrace (); }

}

The _remoteRef member variable can point to either the remote application-syst
translator class itself or its RMI stub. In the first case, all method invocations will
local. Invocations made through RMI stubs go over the network, eventually get
handled by the system object on a remote site.

Application-system translators enable remote invocation by extend

java.rmi.server.UnicastRemoteObject .3 Additionally, they handle the transla-
tion of proxy parameters between the application and user layers. Before a proxy r
ence is passed to a method in a system class, it needs to be unwrapped. Unwrap
the operation of extracting the original system object pointed to by a proxy. If a sys
class returns an instance of another system class as the result of a method call, th
instance needs to be wrapped before it is passed to the application layer. Using

3. While this is not the only way to achieve remote semantics (a class can simply implem
java.rmi.Remote and then usejavax.rmi.PortableRemoteObject.export() to
export objects later on),UnicastRemoteObject provides several important services (e.g
identity), and so far we have chosen to avoid re-implementing them.

f sys-
ation

ced by

r

lator.

sys-
ored
for

tween
o that,
alls to
mod-

pro-

meter
For

obile
All

up-

ated

f the
for
ping, J-Orchestra manages to be oblivious to the way objects are created. Even i
tem objects are created by unmodifiable code, they can be used by regular applic
classes: they just need to be wrapped as soon as they are about to be referen
application code.

The following example demonstrates how“wrapping-unwrapping” works in methods
setForeground and getForeground of the application-system translator fo
java.awt.Component .

public void setForeground (anchored.java.awt.Color arg0) {
_localClassRef.setForeground

((java.awt.Color)Anchored.unwrapSysObj (arg0));
}

public anchored.java.awt.Color getForeground () {
return

(anchored.java.awt.Color)
Anchored.wrapSysObj(_localClassRef.getForeground());

}

_localClassRef points to an instance of the original system class (java.awt.Com-

ponent) that handles all method calls made through the application-system trans

4.2.2 Anchored Modifiable Classes

Anchored modifiable classes are the application classes that inherit from anchored
tem classes or any otherwise modifiable class that is anchored by choice. Anch
modifiable classes are handled with a translation that is identical to the one
anchored unmodifiable classes, except for one aspect. The defining distinction be
unmodifiable and modifiable anchored classes is that the latter can be changed s
if they access other classes’ fields directly, such accesses can be replaced with c
accessor and mutator methods. In this way, other classes referenced by anchored
ifiable classes do not need to be anchored.

4.2.3 Mobile Classes.

Mobile classes are able to migrate to various network sites during the run of a
gram. The migration currently supported by J-Orchestra issynchronous: objects
migrate in response to run-time events, such as passing a mobile object as a para
to a remote method. Migration allows us to exploit data locality in an application.
instance, when a remote method call occurs, it can be advantageous to have a m
object parameter move temporarily or permanently to the callee’s network site.
standard object mobility semantics (e.g., call-by-visit, call-by-move [10]) can be s
ported in an application rewritten by J-Orchestra.

J-Orchestra translates mobile classes in the original application (and the replic
mobile system classes) into aproxy classand aremote class. Proxy classes are created
in source code form, while remote classes are produced by bytecode rewriting o
original mobile class. Proxies for mobile classes are very similar to the ones

e

the

The
proxy

ality

at the

tures.
ty (but
lator).
ith
.

ent.
or

.

are of
s all
meth-
a cre-
Static
anchored classes. The only difference is thata mobile proxy assumes the exact nam
and method interface of the original class. J-Orchestra adds an “__remote ” suffix to
the original class name. The clients of a mobile class access its proxy in exactly
same way as they used to access the original class.

Mobile class proxies mimic the inheritance structure of their original classes.
remote semantics is achieved by changing the superclass of the base (topmost)
from java.lang.Object to java.rmi.server.UnicastRemoteObject .

The example below summarizes the rewrite in source code form (although in re
the original class and the remote class only exist in bytecode form).

//Original class declaration
class A extends B implements I {...}

//Proxy class declaration.
//B or one of its ancestors inherit from UnicastRemoteObject
class A extends B implements I, Proxy { ... }

//Remote class declaration
//body of A__remote is same as body of original A
class A__remote extends B__remote implements I, Remote {...}

Some care needs to be taken during binary modification of a class, to ensure th
types expected match the ones actually used. For instance, the name of a classA needs
to change toA__remote , but most references to typeA (e.g., as the type of a method
parameter) need to continue referring toA—the proxy type is the right type for refer-
ences toA objects in the rewritten application.

4.3 Handling of Java Language Features

In this section, we describe how J-Orchestra handles various Java language fea
Some of the techniques described here are similar to the ones used by JavaPar
JavaParty operates at the source code level while J-Orchestra is a bytecode trans
Due to lack of space, we omit some of the more involved topics, like dealing w
arrays and object identity. The interested reader can find more information in [20]

Maintaining exactly the local execution semantics is not always possible or effici
We will identify the few features for which J-Orchestra will not guarantee, by need
by choice, that the partitioned application will behave exactly like the original one

4.3.1 Static Methods and Fields

J-Orchestra has to handle remote execution of static methods. This also takes c
remote access to static fields: just like with member fields, J-Orchestra replace
direct accesses to static fields of other classes with calls to accessor and mutator
ods. In order to be able to handle remote execution of static methods, J-Orchestr
ates static delegator classes for every original class that has any static methods.
delegators extendjava.rmi.server.UnicastRemoteObject and define all the

nse to
s is
ss is
mber
s.

ile a
static

ons

ic the
cing
ntics:
nown
con-
sible

sys-
r to
es).
uper
bjects
e
very
tion

ject
ain-
static methods declared in the original class.

//Original class
class A {

static void foo (String s) {...}
static int bar () {...}

}

//Static Delegator for A--runs on a remote site
class A__StaticDelegator

extends java.rmi.server.UnicastRemoteObject {
void foo (String s) { A__remote.foo (s); }
int bar () { return A__remote.bar (); }

}

For optimization purposes, a static delegator for a class gets created only in respo
calling any of the static methods in the proxy class. If no static method of a clas
ever called during a particular execution scenario, the static delegator for that cla
never created. Once created, the static delegator or its RMI stub is stored in a me
field of the class’s proxy and is reused for all subsequent static method invocation

A static delegator for a class shares the mobility properties of the class itself. Wh
static delegator for an anchored class must be co-anchored on the same site, the
delegator of a mobile class can potentially migrate at will, irrespective of the locati
of the existing objects of its class type.

4.3.2 Inheritance

Proxies, remote application-system translator classes, and remote classes all mim
inheritance/subtyping hierarchy of their corresponding original classes. Repla
direct references with references to proxies preserves the original execution sema
a proxy can be used when a supertype instance is expected. Since it is not k
which particular proxy is going to be used to invoke a method, only the base class
tains the interface reference that is used for method delegation. This field is acces
to all the subclasses’ proxies by having theprotected access modifier.

4.3.3 Object Creation

Creating objects remotely is a necessary functionality for every distributed object
tem. J-Orchestra proxies’ constructors work differently from other methods in orde
implement distribution policies (i.e., create various objects on given network sit
First, a proxy constructor calls a special-purpose do-nothing constructor in its s
class to avoid the regular object creation sequence. A proxy constructor creates o
using the services of theobject factory. J-Orchestra’s object factory is an RMI servic
running on every network node where the partitioned application operates. E
object factory is parameterized with configuration files specifying a symbolic loca
of every class in the application and the URLs of other object factories. Everyobject
factory clientkeeps remote references to all the object factories in the system. Ob
factory clients determine object locations, handle remote object creations, and m

wing

bles
ods
treat
ing

anges
e

of
lac-
al

e

tain various mappings between the created objects and their proxies. The follo
example shows a portion of the constructor code in a proxy classA.

public A () {
//call super do-nothing constructor
super ((BogusConstructorArg)null);

//check if we are already initialized or are
//called from a subclass
if ((null != _remoteRef) || (!getClass ().equals (A.class)))

return;
...
//Call ObjectFactory
try { _remoteRef = (A) ObjectFactory.createObject(“A”); }
catch (RemoteException e) { ... }

}

4.3.4 “this”

Under the J-Orchestra rewrite, an object can refer to its own methods and varia
directly. That is, no proxy indirection overhead is imposed for access to meth
through thethis reference. Nevertheless, this means that J-Orchestra has to
explicit uses ofthis specially. Recall that remote objects are generated by chang
the name of the original class at the bytecode level. When the name of a class ch
so does the type of all of its explicitthis references. Consider the following exampl
showing the problem if no special care is taken:

//original code
class A { void foo (B b) { b.baz (this); } }
class B { void baz (A a) {...} }

//generated remote object for A
class A__remote {

void foo (B b) { b.baz (this); } //”this” is of type A__remote!
}

Methodbaz in classB expects an argument of typeA, hence the callb.baz(this)

will fail, as this is of typeA__remote . J-Orchestra detects all such explicit uses
this and fixes the problem by looking up the corresponding proxy object and rep
ing this with it. Furthermore, we can store the result of the proxy lookup in a loc
variable and use that variable instead ofthis in future expressions. For example, th
rewritten bytecode forfoo in this case would be:

aload_0 //pass “this” to locateProxy method
invokestatic Runtime.locateProxy
checkcast “A” //locateProxy returns Object, need a cast to “A”
astore_2 //store the located proxy object for future use
aload_1 //load b
aload_2 //load proxy (of type A)
invokevirtual B.baz

tion
e
tack
truct

cture.
er to
s).

Java
mote
es—
(see
tion
ned
effi-

of
ead
ill

ption
an be

mak-
and
the

ran-
n-

ctly
).

ods,
the

ling
d
rigi-

/

At the bytecode level, it is somewhat involved to detect when the transforma
should be applied. Recognizing explicit uses ofthis (as opposed to instances of th
aload_0 instruction used to reference the object’s own methods) requires a full s
machine emulator for the bytecode instructions. The emulator needs to recons
operations and operands from the bytecode stack-machine instruction archite
This is the only instance where we have found our transformations to be hard
apply at the bytecode level than at the source code level (e.g., like JavaParty doe

4.3.5 Multithreading and Synchronization

The handling of synchronization is an important issue in guaranteeing regular
semantics for a partitioned multithreaded application. Java has no support for re
synchronization: RMI does not support transparency of synchronization referenc
all wait /notify calls on remote objects are not propagated to the remote site
[18], section 8.1). Nevertheless, it is possible to build a distributed synchroniza
mechanism that will guarantee semantics identical to regular Java for all partitio
applications. On the other hand, such a mechanism will likely be complex and in
cient, especially if the distribution relies on an unmodified version of Java RMI. One
the noteworthy issues with synchronization is the possibility of self-deadlocks if thr
identity is not maintained when the flow of control moves over the network. We w
not describe here the complications of distributed synchronization—a good descri
of both the problems and the possible solutions (also applicable to J-Orchestra) c
found in the documentation of version 1.05 of JavaParty [8].

In the near future, we plan to evolve the J-Orchestra synchronization mechanism,
ing this description of transient interest. The current mechanism is rudimentary
incomplete. First, thread identity is not maintained when the flow of control crosses
network, creating the possibility of deadlocks. Second, the identity of locks is gua
teed whensynchronized methodsare used (which is the most common Java sy
chronization technique) but not necessarily whensynchronized code blocksare
used. When code blocks are used, lock identity is maintained per-site: if allsynchro-

nized blocks are executed on the same machine, synchronization will work corre
(barring the problems caused by not maintaining thread identity across machines

The translation to maintain these properties is as follows: for synchronized meth
we only have to ensure that the proxy “forwarder” method is not synchronized—
original method on the remote object will perform the synchronization. For hand
wait /notify /notifyAll calls on proxies, we globally detect all such calls an
replace them with calls to specially generated methods in the proxy objects (the o
nalwait /notify /notifyAll in java.lang.Object arefinal and cannot be over-
ridden). Proxies propagate allwait /notify /notifyAll calls to the remote objects
they represent. All remote objects (__remote objects for mobile classes or system
application translators for anchored classes) export methods that implementwait /
notify /notifyAll semantics on the object.

. For

ction
stra
of

line

ible
ble to
gu-
ion
yte-
with
task

t for
the J-
ically
y try

s J-
ation
ader
sses
nsla-
lly:
ading
e only
same

dis-
yclic
less,
gar-

fields
this

er
This
4.3.6 Reflection and Dynamic Loading

Reflection can be used explicitly to render the J-Orchestra translation incorrect
instance, an application class may get anObject reference, query it to determine its
actual type, and fail if the type is a proxy. Nevertheless, the common case of refle
that is used only to invoke methods of an object is compatible with the J-Orche
rewrite—the corresponding method will be invoked on the proxy object. In fact, one
the first example applications distributed with J-Orchestra—the JShell command
shell—uses reflection heavily.

We should note that offering full support for correctness under reflection is poss
and we have not done so for pure engineering reasons. For example, it is possi
create a J-Orchestra-specific reflection library that will mimic the interface of the re
lar Java reflection routines but will take care to always hide proxies. All reflect
questions on a proxy object will instead be handled by the remote object. With b
code manipulation, we can replace all method calls to Java reflection functionality
method calls to the J-Orchestra-specific reflection library. We have considered this
to be too complex for the expected benefit.

Similar observations hold regarding dynamic class loading. J-Orchestra is mean
use in cases where the entire application is available and gets analyzed, so that
Orchestra classification and translation are guaranteed correct. Currently, dynam
loading code that was not rewritten by J-Orchestra may fail because the code ma
to access remote data directly. Additionally, dynamically loading code that call
Orchestra rewritten code may violate the security guarantees of the original applic
(we discuss the problem in more detail in [20]). Nevertheless, one can imagine a lo
installed by J-Orchestra that takes care of rewriting any dynamically loaded cla
before they are used. Essentially, this would implement the entire J-Orchestra tra
tion at load time. Unfortunately, classification cannot be performed incrementa
unmodifiable classes may be loaded and anchored on some nodes before lo
another class makes apparent that the previous anchorings are inconsistent. Th
safe approach would be to make all dynamically loaded classes anchored on the
network site.

4.3.7 Garbage Collection

Distributed garbage collection is a tough problem. J-Orchestra relies on the RMI
tributed reference counting mechanism for garbage collection. This means that c
garbage, where the cycle traverses the network, will never be collected. Neverthe
this aspect is orthogonal to the goal of J-Orchestra—the system just inherits the
bage collection facility of the underlying middleware.

4.3.8 Inner Classes

On the Java language level, inner classes have direct access to all member
(including private and protected) of their enclosing classes. In order to enable
access, the Java compiler introducessyntheticmethods that access and modify memb
fields of enclosing classes. Synthetic methods are not visible during compilation.

to be
e syn-
, no
etic
does

or syn-

and
fined
vi-

nse.
hen
sults
pe-
ll to

uld
poli-
called

nces

s-

is a
ses.

s
ution
cant
call

an
other
. For
only
tar-
Ms

nt.

uch
the
clearly presents a problem for J-Orchestra since synthetic methods also need
accessed through a proxy. The code inside a synthetic proxy method accesses th
thetic method of its remote class. Since proxies are created in source code form
Java compiler would be able to successfully compile them. Removing the synth
attributes from methods in remote classes eliminates the problem. The removal
not violate the Java security semantics because there are no access restrictions f
thetic methods to begin with.

4.3.9 System.out, System.in, System.err, System.exit, System.properties

The java.lang.System class provides access to standard input, standard output,
error output streams (exported as pre-defined objects), access to externally de
“properties”, and a way to terminate the execution of the JVM. In a distributed en
ronment, it is important to modify these facilities so that their behavior makes se
Different policies may be appropriate for different applications. For example, w
any of the partitions writes something to the standard output stream, should the re
be visible only on the network site of the partition, all the network sites, or one s
cially designated network site that handles I/O? If one of the partitions makes a ca
System.exit , should only the JVM that runs that partition exit or the request sho
be applied to all the remaining network sites? J-Orchestra allows defining these
cies on a per-application basis. For this purpose, J-Orchestra provides classes
RemoteIn , RemoteOut , RemoteErr , RemoteExit , andRemoteProperties whose
implementation determines the application-specific policy. For example, all refere
to System.out are replaced withRemoteOut.out() in all the rewritten code. An
implementation ofRemoteOut.out() can return a stream that redirects all the me
sages to a particular network site, for example.

5 Performance

5.1 Overhead and Limited Rewrite

As mentioned earlier, modifiable classes may be anchored by choice. In fact, it
common usage scenario for J-Orchestra to try to make mobile only very few clas
We call this the J-Orchestralimited rewritemodel. The reason to limit which classe
are mobile has to do with performance. The J-Orchestra rewrite adds some exec
overhead even when mobile objects are used entirely locally. The most signifi
overheads of the J-Orchestra rewrite are one level of indirection for each method
to a different application object, two levels of indirection for each method call to
anchored system object, and one extra method call for every direct access to an
object’s fields. The J-Orchestra rewrite keeps overheads as low as possible
instance, for an application object created and used only locally, the overhead is
one interface call for every virtual call, because proxy objects refer directly to the
get object and not through RMI. Interface calls are not expensive in modern JV
(only about as much as virtual calls [1]) but the overall slowdown can be significa

The overall impact of the indirection overhead on an application depends on how m
work the application’s methods perform per method call. A simple experiment puts

irec-
ead
test

sign,
ssing
cond-
d the
used
class
ll as
single
e 2).
lica-

ther
ill be
mited
curs
input)
lica-

aph-
the

ess
this
ght
ps is
costs in perspective. Table 1 shows the overhead of adding an extra interface ind
tion per virtual method call for a simple benchmark program. The overall overh
rises from 17% (when a method performs 10 multiplications, 10 increment, and 10
operations) to 35% (when the method only performs 2 of these operations).

Penalizing programs that have small methods is against good object-oriented de
however. Furthermore, the above numbers do not include the extra cost of acce
anchored objects and fields of other objects indirectly (although these costs are se
ary). To get an idea of the total overhead for an actual application, we measure
slowdown of the J-Orchestra rewrite using J-Orchestra itself as input. That is, we
J-Orchestra to translate the main loop of the J-Orchestra rewriter, consisting of 41
files totalling 192KB. Thus, the rewritten version of the J-Orchestra rewriter (as we
all system classes it accesses) became remote-capable but still consisted of a
partition. In local execution, the rewritten version was about 37% slower (see Tabl
Although a 37% slowdown of local processing can be acceptable for some app
tions, for many others it is too high.

By anchoring classes by choice, we ensure that their objects can refer to all o
objects on the same site with no overhead. These anchored classes will st
remotely accessible, but their proxies are only used for true remote access. The li
rewrite is particularly successful when most of the processing in an application oc
on one network site and only some resources (e.g., graphics, sound, keyboard
are accessed remotely. We have used the limited rewrite to partition several app
tions that follow this pattern (e.g., a GUI-driven demo of the Java speech API, a gr
ical display of real time statistics from another machine, etc.). In all cases,
execution overhead from J-Orchestra indirection was practically zero.

5.2 Optimization: Lazy Remote Object Creation

Recall that remote objects extendjava.rmi.server.UnicastRemoteObject to
enable remote execution. The constructor ofjava.rmi.server.UnicastRemo-

teObject exports the remote object to the RMI run-time. This is an intensive proc
that significantly slows down the overall object creation. J-Orchestra tries to avoid
slowdown by employing lazy remote object creation for all the objects that mi
never be invoked remotely. If a proxy constructor determines that the object it wra

Table 1. J-Orchestra indirection overhead as a function of average work per
method call (a billion calls total)

Work (multiply,
increment, test)

Original Time Rewritten Time Overhead

2 35.17s 47.52s 35%

4 42.06s 51.30s 22%

10 62.5s 73.32s 17%

gh the
y
and

ote
spe-
the

the

d-
sible
il it is
of a

ructor
ces-

akes
y are
will

tion
ench-

ches-
single

ver-
58%,
% (an

e X-
ring
) over

in-

rite:
ssible
f the
to be created on the local machine, then the creation process does not go throu
object factory. Instead, alazy version of the remote object is created directly. A laz
object is identical to a remote one with the exception of having a different name
not inheriting fromjava.rmi.server.UnicastRemoteObject . A proxy continues
to point to such a lazy object until the application attempts to use the proxy in a rem
method call. In that case, the proxy converts its lazy object to a remote one using a
cial conversion constructor. This constructor reassigns every member field from
lazy object to the remote one. All static fields are kept in the remote version of
object to avoid data inconsistencies.

Although this optimization may at first seem RMI-specific, in fact it is not. Every mi
dleware mechanism suffers significant overhead for registering remotely acces
objects. Lazy remote object creation ensures that the overhead is not suffered unt
absolutely necessary. In the case of RMI, our experiments show that the creation
remotely accessible object is over 200 times more expensive than a single const
invocation. In contrast, the extra cost of converting a lazy object into a remotely ac
sible one is about the same as a few variable assignments in Java. Therefore, it m
sense to optimistically assume that objects are created only for local use, until the
actually passed to a remote site. Considering that a well-partitioned application
only move few objects over the network, the optimization is likely to be valuable.

The impact of speeding up object creation is significant in terms of total applica
execution time. We measured the effects using the J-Orchestra code itself as a b
mark. The result is shown below (Table 2). The measurements are on the full J-Or
tra rewrite: all objects are made remote-capable, although they are executed on a
machine. 767 objects were constructed during this execution. The overhead for the
sion of J-Orchestra that eagerly constructs all objects to be remote-capable is
while the same overhead when the objects are created for local use is less than 38
overall speedup of 1.15, or 15%).

5.3 Performance Comparison to X-Windows

J-Orchestra is an attractive alternative to input/output redirection technologies lik
Windows and telnet. A good partitioning using J-Orchestra can avoid transfer
redundant data (e.g., graphics that do not change, or inefficient representations
the network. In this section, we compare the performance of J-Orchestra to X-W
dows, used to display graphics on a remote host.

All the experiments described are partitioned using the J-Orchestra limited rew
only a handful of classes are made mobile, most classes are made remotely acce
and get anchored on different sites. In all experiments, we measured the run time o

Table 2. Effect of lazy remote object creation and J-Orchestra indirection

Original time Indirect lazy Overhead Indirect non-lazy Overhead

6.63s 9.11s 37.4% 10.48s 58.1%

ble)
sults
he

on-

mote
The
ree
ver-

and
last
he
r the
will

aried

ition-
e to
eline
original Java application, as well as the run time of the rewritten (i.e., remote-capa
version of the application but executing in a single partition. These two baseline re
were identical—the limited rewrite only adds indirection to a tiny proportion of t
total objects created in our example programs.

We used JDK 1.3 on two Sun Ultra 10 machines (Sparc II 440MHz processor) c
nected with a 100Mbit Ethernet network for these experiments.

5.3.1 Window Drawing

We created three different tests of window operations. The first opens an empty re
window. The second opens a remote window and displays 100 text buttons on it.
third opens a remote window and displays 100 graphical buttons on it. In all th
cases, the window is repainted 10 times. Each of the three experiments has two
sions: one where all drawing operations are initiated from the window object itself
one where the (re-)painting is initiated from a different object. The reason for this
distinction is that we want to produce a more “realistic” comparison by initiating t
operations remotely. That is, in the J-Orchestra case, there will be operations ove
network for each re-painting, although the graphics for the buttons themselves
never need to be transferred over the network.

The results (run times) are shown below (all numbers are averages of 3 runs that v
by at most 0.5s). The baseline is the run time of a local version.

Version 1 of the above experiment shows the benefit of J-Orchestra, but the part
ing can be considered “unfairly optimal”. All the graphics are produced in respons
a single network operation. Therefore, J-Orchestra performs very close to the bas

Table 3. Version 1 of window experiments

Experiment/System Empty window
Window + 100 text

buttons
Window + 100

graphics buttons

Baseline 2.9s 7.2s 6.6s

X-Windows 4.7s 8.2s 15.8s

J-Orchestra 3.1s 7.7s 6.6s

Table 4. Version 2 of window experiments

Experiment/System Empty window
Window + 100 text

buttons
Window + 100

graphics buttons

Baseline 2.7s 7.6s 6.8s

X-Windows 4.5s 8.5s 16.3s

J-Orchestra 4.9s 8.4s 7.7s

ini-
-Win-
nsfer
ther.
ower
hese
ays

eri-
ctice
ing
Java
hour
ime).
the
data

se-
the
e as

s-per-
splay

Apart
lay
aws
ck.

in-
aph-
text,
wn, J-
our
in the Version 1 experiment. Version 2, however, is more realistic: all re-drawing is
tiated over the network. In this case, J-Orchestra performs about the same as X
dows, except for the case of graphics buttons. In this case, X-Windows has to tra
the graphical icon over the network, while J-Orchestra avoids this overhead altoge
As a result, J-Orchestra is more than twice as fast as X-Windows. Of course, a sl
network (e.g., 10Mbit ethernet, ISDN, or modem connection) would accentuate t
results dramatically. We should mention that the window with text buttons displ
incorrectly (empty window) in the case of X-Windows.

5.3.2 Simple Animation

In this benchmark, we test a small but fully usable third-party application. This exp
ment is representative of the way X-Windows and J-Orchestra will be used in pra
to graphically display real time data on a different machine from the one produc
them. It consists of a Java analog clock program (one of the many written as
graphics demos). The program draws a simple face of a digital/analog clock (4
numbers, three moving clock hands, and a digital representation of the current t
With X-Windows, we just run the clock application on one machine and display
results on another. With J-Orchestra, however, we can transfer only the interesting
(aDate object) over the network and do all the drawing locally. To turn this into a u
ful benchmark, we changed it very slightly, so that the clock updates the time on
screen as quickly as possible—i.e., the program keeps polling the system for tim
often as it can and displays the results. The measured quantity is then the frame
second attained on the remote display. In other words, we are treating the clock di
as a real-time animation and measure the animation quality.

The measurements (frames per second) for this benchmark appear in Table 5.
from the original clock, we also created two stripped-down versions that only disp
the “analog” part of the clock. The first only draws the clock hands. The second dr
the clock hands as well as the numbers “3”, “6”, “9”, and “12” on the face of the clo

For the original clock application, J-Orchestra is almost three times faster than X-W
dows. The reason is that X-Windows needs to transfer over the network a lot of gr
ical information that does not change (e.g., the kind of font used for the displayed
text that does not change on the screen, etc.). When just the clock hands are dra
Orchestra is a little slower than X-Windows. When, however, as little as the four h

Table 5. Clock Experiment

Experiment/System Original clock
Clock with just

hands
Clock with hands

and hours

Baseline 86 fps 294 fps 87 fps

X-Windows 22 fps 289 fps 32 fps

J-Orchestra 64 fps 175 fps 70 fps

again

eri-
effect
ver-
code
col
nd
ation
for
ost
ays
pro-
in a

sfers
ical

t two
olo-

tech-
tly

c parti-
Pan-
atic

estra
ewrite

J-
tant
ddis-
d has

ake
net-

hem.
parti-
dis-
numbers (3, 6, 9, and 12) need to be drawn on the face of the clock, J-Orchestra
is more than twice as fast as X-Windows.

5.3.3 Analysis

We analyzed the network traffic in order to show the trade-off in the above exp
ments. Due to lack of space, we cannot present the full results (bytes per request,
of clustering, etc.) but the main observations are clear: X-Windows has a lower o
head per network transfer, but J-Orchestra has the flexibility to place the drawing
on the machine where the graphics will be displayed. More specifically, the X proto
[15] is fairly inefficient in terms of the amount of data transferred in order to se
graphics over the network. Nevertheless, compared to a heavyweight implement
of general purpose middleware like Java RMI, the X protocol is much better suited
transferring graphics. A major difference is that RMI is a synchronous protocol: m
X protocol requests do not generate replies, but RMI remote method calls will alw
need to generate network traffic when an operation completes. Additionally, the X
tocol allows multiple remote drawing requests to be clustered together and sent
single TCP segment. J-Orchestra outperforms X-Windows only because it tran
much less data over the network (e.g., only the current time instead of full graph
information for the clock display, no font information, etc.).

6 Related Work

Distributed computing has been the main focus of systems research in the pas
decades. Therefore, there is a wealth of work that exhibits similar goals or method
gies to ours. We will separate closely related work (approaches that use similar
niques to ours) from indirectly related work (work with similar goals but significan
different approaches).

6.1 Directly Related Work

Several recent systems other than J-Orchestra can also be classified as automati
tioning tools. In the Java world, the closest approaches are the Addistant [19] and
gaea [16] systems. The Coign system [9] has promoted the idea of autom
partitioning for applications based on COM components.

Addistant [19] is the closest alternative to J-Orchestra in the design space. J-Orch
has three advantages over Addistant. First, J-Orchestra has a far more general r
engine allowing arbitrary partitioning of the application: we discussed earlier how
Orchestra allows any partitioning along application boundaries. In contrast, Addis
imposes limitations based on dependencies on unmodifiable code. For instance, A
tant cannot make a class remotely accessible when the class is unmodifiable an
unmodifiable clients. Second, J-Orchestra allows object mobility, allowing to t
advantage of locality. With Addistant, objects are created and used on the same
work site—they cannot move to be co-located with other objects that access t
Third, J-Orchestra includes automatic analyses that ensure the correctness of a
tioning and relieve the user from having to specify policies for each class. The Ad

are
odifi-
infor-
tes

M
irst,
are
are

that
xperi-
lop-
ical.
dis-
nents
xperi-
rld
he

a are
exists
cent

to J-
parti-
ource
sed to
ssible.
lim-
ppens

e site,

ted
s to
iques
ns of

ress
eless,
tant user has to explicitly specify whether instances of an unmodifiable class
created only by modifiable code, whether an unmodifiable class is accessed by m
able code, whether instances of a class can be safely passed by-copy, etc. This
mation is application-specific and getting it wrong results in a partitioning that viola
the original application semantics.

Coign [9] is an automatic partitioning system for software based on Microsoft’s CO
model. Although Coign is a pioneering system, it suffers from two drawbacks. F
Coign is not applicable to many real-world situations: although Windows softw
often exports coarse-grained COM components, very few real-world applications
written as collections of many fine-grained COM components. The applications
constitute success cases for Coign (mainly the Octarine word processor) were e
mental and written specifically to showcase that COM is a viable platform for deve
ing applications from many small components. The second drawback is techn
Coign does not try to solve the hard problems of automatic partitioning: it does not
tribute components when they share data through memory pointers. Such compo
are deemed non-distributable and are located on the same machine. Practical e
ence with Coign [9] showed that this is a severe limitation for the only real-wo
application included in Coign’s example set (the Microsoft PhotoDraw program). T
Coign approach would be impossible in the case of Java: almost all program dat
accessed through references in Java. No support for synchronous data mobility
in Coign, but the application can be periodically repartitioned based on its re
behavior.

Pangaea [16][17] is an automatic partitioning system that has very similar goals
Orchestra. Pangaea is based on the JavaParty [13] infrastructure for application
tioning. Since JavaParty is designed for manual partitioning and operates at the s
code level, Pangaea is also limited in this respect. Thus, Pangaea cannot be u
make Java system classes (which are supplied in bytecode format) remotely acce
Therefore, Pangaea has little applicability to real world situations, especially with
ited manual intervention. For instance, much data exchange in Java programs ha
through system classes (e.g., collection classes, likejava.util.Vector). If such
classes are not remotely accessible, all their clients need to be located on the sam
making partitioning almost impossible for realistic applications.

Finally, we should mention that the JavaParty infrastructure [13][8] is closely rela
to J-Orchestra. The similarity is not so much in the objectives—JavaParty only aim
support manual partitioning and does not deal with system classes. The techn
used, however, are very similar to J-Orchestra, especially for the newest versio
JavaParty [8].

6.2 Indirectly Related Work

Automatic partitioning is essentially aDistributed Shared Memory (DSM)technique.
Just like traditional DSM approaches, we try to create the illusion of a shared add
space, when the data are really distributed across different machines. Neverth
automatic partitioning differs from traditional DSM work in one major aspect:only the

3]
a and
abil-
ed

ssi-
the
no

with

he J-
ded-

in its

ny
riate
with

auto-
turn

r to
obile,
xpres-
ipu-

error

d in
[22])
per-
y of
ut for

sys-
nally
t of
sys-
ntly

st par-
te-
han-
han-
hides
application is allowed to change, not the run-time environment. Traditional DSM sys-
tems like Munin [5], Orca [3], and, in the Java world, CJVM [2], and Java/DSM [2
use a specialized run-time environment in order to detect access to remote dat
ensure data consistency. The deployment cost of DSMs has restricted DSM applic
ity to high-performance parallel applications. In contrast, automatically partition
Java applications work on original, unmodified Java Virtual Machines (JVMs), po
bly shipped with Web browsers. All modifications necessary are made directly to
application, using compilation techniques. In this way, automatic partitioning has
deployment cost, allowing it to be applied to regular applications and compete
lightweight technologies like X-Windows.

Among distributed shared memory systems, the ones most closely resembling t
Orchestra approach are object-based DSMs, like Orca [3]. The Orca system has a
icated language and run-time system, but also has similarities to J-Orchestra
treatment of data at the object level, and its use of static analysis.

Mobile object systems, like Emerald [4][10] have similarities with J-Orchestra. Ma
of the J-Orchestra ideas on implementing mobile objects and choosing approp
semantics for method invocations (synchronous object migration) have originated
Emerald.

The Doorastha system [6] represents another piece of work closely related to
matic partitioning. Doorastha allows the user to annotate a centralized program to
it into a distributed application. Unfortunately, all the burden is shifted to the use
specify what semantics are valid for a specific class (e.g., whether objects are m
whether they can be passed by-copy, etc.). The Doorastha annotations are quite e
sive in terms of how method arguments, different fields of a class, etc., are man
lated. Nevertheless, programming in this way is tedious and error-prone: a slight
in an annotation may cause insidious inconsistency errors.

The need for infrastructure to support application partitioning has been recognize
the systems community. Proposals for such infrastructure (most recently, Protium
usually try to address different concerns from those covered by J-Orchestra. High
formance is an essential element, with the infrastructure trying to hide the latenc
remote accesses. J-Orchestra aims at a much higher degree of automation, b
applications with more modest network performance requirements.

Finally, we should mention that the overall approach of programming distributed
tems as if they were centralized (“papering over the network”) has been occasio
criticized (e.g., see the best known “manifesto” on the topic [21]). The main poin
criticism has been that distributed systems fundamentally differ from centralized
tems because of the possibility of partial failure, which needs to be handled differe
for each application. Nevertheless, J-Orchestra can address this problem, at lea
tially: although the input of the system is a binary application, the proxies for remo
capable classes are produced in source code. Application-specific partial-failure
dling can be effected by manually editing the source code of the proxy classes and
dling the corresponding Java language exceptions. Thus, although J-Orchestra

e-
ly
s for
s to

, as
listic,
en-

eters
r load
and
I/O

hile
ine is
w-
ppli-
uted
less

ame
s its
ful
ture,
en

adly
ti-

elop
se to
ethod
hree

. The
ning

origi-
om-

ents
es of
l per-
t but
-art
ties
much of the complexity of distribution, it allows the user to handle distribution-sp
cific failure exactly like it would be handled through manual partitioning. Alternative
viewed, the user can concentrate on the part of the application that really matter
distributed computing: partial failure handling. This part is the only code that need
be written by hand in order to partition an application.

7 Status and Conclusions

J-Orchestra is work-in-progress, but most of the back-end functionality is in place
described in this paper. We have already used J-Orchestra to partition several rea
third-party applications. Among them are “J-Shell” (a command line shell implem
tation for Java), a graphical demo of the Java speech API (the user selects param
and a sound synthesizer composes phrases), an application for monitoring serve
and displaying real-time graphical statistics, and some small graphical demos
benchmarks. All of the above were partitioned in a client-server model, where the
part of the functionality (graphics, text, etc.) is displayed on a client machine, w
processing or execution of commands takes place on a server. Our client mach
typically a hand-held iPAQ PDA, running Linux. This environment is good for sho
casing the capabilities of J-Orchestra—even relatively uninteresting centralized a
cations become exciting demos when they are automatically turned into distrib
applications, partly running on a hand-held device that communicates over a wire
network with a central server.

In the future, we intend to continue work on the J-Orchestra back-end, but at the s
time develop more front-end functionality. Currently, J-Orchestra uses Java RMI a
distribution middleware. RMI has been criticized for its inefficiency, but offers use
features for transparent distribution (e.g., distributed reference counting). In the fu
we may select a more efficient middleware implementation (e.g., KaRMI [12]) wh
such alternatives become more mature. Any middleware, however, will perform b
if the application is not partitioned well and object mobility is not coordinated op
mally. Therefore, the greatest future challenge for J-Orchestra will be to dev
mechanisms that automatically infer detailed object migration strategies in respon
synchronous events. (For example, a strategy could be as detailed as “when a m
foo is called, all its arguments and all data reachable from its arguments in up to t
indirections should migrate to the method’s execution site.”)

A common question we are asked concerns our choice of the name “J-Orchestra”
reason for the name is that there is a strong analogy between application partitio
and the way orchestral music is often composed. Many orchestral pieces are not
nally written for orchestral performance. Instead, only a piano score is originally c
posed. Later, an “orchestration” process takes place that determines which instrum
should play which notes of the completed piano score. There are many exampl
orchestrating piano music that was never intended by its composer for orchestra
formance. There are several examples of piano pieces that have several brillian
totally different orchestrations. With J-Orchestra, we provide a state-of-the
“orchestration” facility for Java programs. Taking into account the unique capabili

trib-
huge
l.

rcus
ll as
iasm
the
r.

der

er,
red
nd

m

en
f the

r,

nd
s

: A

d
nd

ed
9-
of network nodes (instruments) we partition Java applications for harmonious dis
uted execution. We believe that automatic application partitioning represents a
promise and that J-Orchestra is a general and powerful automatic partitioning too

Acknowledgments

Austin (Chun Fai) Chau, Dean Pu Mao, Kane See, Hailemelekot Seifu, and Ma
Handte have all contributed to the J-Orchestra front-end (GUI and profiler) as we
the partitioning and set up of current J-Orchestra demo applications. Their enthus
helped us stay on track. We would also like to thank Kresten Krab Thorup and
anonymous referees for their valuable comments that helped strengthen the pape

This work has been supported by the Yamacraw Foundation, by DARPA/ITO un
the PCES program, and by a Raytheon E-Systems faculty fellowship.

References

[1] Bowen Alpern, Anthony Cocchi, Stephen Fink, David Grove, and Derek Lieb
“Efficient Implementation of Java Interfaces: Invokeinterface Conside
Harmless”, in Proc.Object-Oriented Programming, Systems, Languages, a
Applications (OOPSLA), 2001.

[2] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single Syste
Image of a JVM on a Cluster”, in Proc.ICPP’99.

[3] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Ko
Langendoen, Tim Ruhl, and M. Frans Kaashoek, “Performance Evaluation o
Orca Shared-Object System”,ACM Trans. on Computer Systems, 16(1):1-40,
February 1998.

[4] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carte
“Distribution and Abstract Types in Emerald”, inIEEE Trans. Softw. Eng.,
13(1):65-76, 1987.

[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation a
performance of Munin”,Proc. 13th ACM Symposium on Operating System
Principles, pp. 152-164, October 1991.

[6] Markus Dahm, “Doorastha—a step towards distribution transparency”,JIT,
2000. Seehttp://www.inf.fu-berlin.de/~dahm/doorastha/ .

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha,The Java Language
Specification, 2nd Ed., The Java Series, Addison-Wesley, 2000.

[8] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen, “JavaParty
distributed companion to Java”,http://wwwipd.ira.uka.de/JavaParty/

[9] Galen C. Hunt, and Michael L. Scott, “The Coign Automatic Distribute
Partitioning System”,3rd Symposium on Operating System Design a
Implementation (OSDI’99), pp. 187-200, New Orleans, 1999.

[10] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grain
Mobility in the Emerald System”, ACM Trans. on Computer Systems, 6(1):10
133, February 1988.

re

ote

th
ive

“A
”,

ion

n
ies,

ob
nd

s

[11] Nelson King, “Partitioning Applications”,DBMS and Internet Systems
magazine, May 1997. Seehttp://www.dbmsmag.com/9705d13.html .

[12] Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A Mo
Efficient RMI for Java”, in Proc.ACM Java Grande Conference, 1999.

[13] Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Rem
Objects in Java”,Concurrency: Practice and Experience, 9(11):1125-1242,
1997.

[14] Robert W. Scheifler, and Jim Gettys, “The X Window System”,ACM
Transactions on Graphics, 5(2): 79-109, April 1986.

[15] Robert W. Scheifler, “X Window System Protocol, Version 11”,Network
Working Group RFC 1013, April 1987.

[16] Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for Java”, 4
IEEE Workshop on High-Level Parallel Programming Models and Support
Environments (HIPS '99), San Juan, Puerto Rico, April 1999.

[17] Andre Spiegel, “Automatic Distribution in Pangaea”,CBS 2000, Berlin, April
2000. See alsohttp://www.inf.fu-berlin.de/~spiegel/pangaea/

[18] Sun Microsystems, Remote Method Invocation Specification,
http://java.sun.com/products/jdk/rmi/ , 1997.

[19] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano,
Bytecode Translator for Distributed Execution of ‘Legacy’ Java Software
European Conference on Object-Oriented Programming (ECOOP), Budapest,
June 2001.

[20] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra: Automatic Java Applicat
Partitioning”, Georgia Tech, CoC Tech. Report, GIT-CC-02-17, 2002.

[21] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note o
distributed computing”, Technical Report, Sun Microsystems Laborator
SMLI TR-94-29, November 1994.

[22] Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, R
Pike, Girija Narlikar, Sape Mullender, and Eric Grosse, “Protium, a
Infrastructure for Partitioned Applications”,Eighth IEEE Workshop on Hot
Topics in Operating Systems (HotOS-VIII). May 20—23, 2001, Schoss Elmau
Germany, pp. 41-46, IEEE Computer Society Press, 2001.

[23] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneou
Computing”,Concurrency: Practice and Experience, 9(11):1213-1224, 1997.

	J-Orchestra: Automatic Java Application Partitioning
	Eli Tilevich and Yannis�Smaragdakis Center for Experimental Research in Comp. Science (CERCS), Co...
	Abstract
	J-Orchestra is an automatic partitioning system for Java programs. J- Orchestra takes as input Ja...
	We have used J-Orchestra to successfully partition several realistic applications including a com...

	1 Introduction
	2 System Overview
	Fig. 1 . An overview of the J-Orchestra partitioning process

	3 Rewrite Strategy Overview
	3.1 Main Insights
	3.2 Handling Unmodifiable Code

	4 Rewrite Mechanism
	4.1 Classification
	Fig. 2 . The possible categories of classes. Unmodifiable classes need to be anchored, but both s...
	Fig. 3 . J-Orchestra algorithm to compute anchored unmodifiable classes

	4.2 Translation
	4.2.1 Anchored Unmodifiable (System) Classes
	4.2.2 Anchored Modifiable Classes
	4.2.3 Mobile Classes.

	4.3 Handling of Java Language Features
	4.3.1 Static Methods and Fields
	4.3.2 Inheritance
	4.3.3 Object Creation
	4.3.4 “this”
	4.3.5 Multithreading and Synchronization
	4.3.6 Reflection and Dynamic Loading
	4.3.7 Garbage Collection
	4.3.8 Inner Classes
	4.3.9 System.out, System.in, System.err, System.exit, System.properties

	5 Performance
	5.1 Overhead and Limited Rewrite
	Table 1 . J-Orchestra indirection overhead as a function of average work per method call (a billi...

	2
	35.17s
	47.52s
	35%
	4
	42.06s
	51.30s
	22%
	10
	62.5s
	73.32s
	17%
	5.2 Optimization: Lazy Remote Object Creation
	Table 2 . Effect of lazy remote object creation and J-Orchestra indirection

	Original time
	Indirect lazy
	Overhead
	Indirect non-lazy
	Overhead
	6.63s
	9.11s
	37.4%
	10.48s
	58.1%
	5.3 Performance Comparison to X-Windows
	5.3.1 Window Drawing
	Table 3 . Version 1 of window experiments

	Baseline
	2.9s
	7.2s
	6.6s
	X-Windows
	4.7s
	8.2s
	15.8s
	J-Orchestra
	3.1s
	7.7s
	6.6s
	Table 4 . Version 2 of window experiments

	Baseline
	2.7s
	7.6s
	6.8s
	X-Windows
	4.5s
	8.5s
	16.3s
	J-Orchestra
	4.9s
	8.4s
	7.7s
	5.3.2 Simple Animation
	Table 5 . Clock Experiment

	Baseline
	86 fps
	294 fps
	87 fps
	X-Windows
	22 fps
	289 fps
	32 fps
	J-Orchestra
	64 fps
	175 fps
	70 fps
	5.3.3 Analysis
	6 Related Work
	6.1 Directly Related Work
	6.2 Indirectly Related Work

	7 Status and Conclusions
	Acknowledgments
	References
	[1] Bowen Alpern, Anthony Cocchi, Stephen Fink, David Grove, and Derek Lieber, “Efficient Impleme...
	[2] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Cl...
	[3] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M...
	[4] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Ab...
	[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Mun...
	[6] Markus Dahm, “Doorastha—a step towards distribution transparency”, JIT, 2000. See http://www....
	[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Specification, 2nd E...
	[8] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen, “JavaParty: A distributed companion to...
	[9] Galen C. Hunt, and Michael L. Scott, “The Coign Automatic Distributed Partitioning System”, 3...
	[10] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grained Mobility in the Eme...
	[11] Nelson King, “Partitioning Applications”, DBMS and Internet Systems magazine, May 1997. See ...
	[12] Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A More Efficient RMI for Java...
	[13] Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Co...
	[14] Robert W. Scheifler, and Jim Gettys, “The X Window System”, ACM Transactions on Graphics, 5(...
	[15] Robert W. Scheifler, “X Window System Protocol, Version 11”, Network Working Group RFC 1013,...
	[16] Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for Java”, 4th IEEE Workshop on...
	[17] Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin, April 2000. See also h...
	[18] Sun Microsystems, Remote Method Invocation Specification, http://java.sun.com/products/jdk/r...
	[19] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator ...
	[20] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra: Automatic Java Application Partitioning”,...
	[21] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”, Te...
	[22] Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike, Girija Nar...
	[23] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Pr...

