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Abstract. J-Orchestra is an automatic partitioning system for Java programs. J-
Orchestra takes as input Java applications in bytecode format and transforms
them into distributed applications, running on distinct Java Virtual Machines. To
accomplish such automatic partitioning, J-Orchestra uses bytecode rewriting to
substitute method calls with remote method calls, direct object references with
proxy references, etc. Using J-Orchestra does not require great sophistication in
distributed system methodology—the user only has to specify the network loca-
tion of various hardware and software resources and their corresponding appli-
cation classes. J-Orchestra has significant generality, flexibility, and degree of
automation advantages compared to previous work on automatic partitioning.
For instance, J-Orchestra can correctly partition almost any pure Java program,
allowing any application object to be placed on any machine, regardless of how
application objects access each other and Java system objects. This power is due
to the novel way that J-Orchestra deals with unmodifiable code (e.g., native code
in the Java system classes). Additionally, J-Orchestra offers support for object
migration and run-time optimizations, like the lazy creation of distributed
objects.

We have used J-Orchestra to successfully partition several realistic applications
including a command line shell, a ray tracer, and several applications with native
dependencies (sound, graphics).

1 Introduction

Application partitioningis the task of breaking up the functionality of an application
into distinct entities that can operate independently, usually in a distributed setting.
Application partitioning has been advocated strongly in the computing press [11] as a
way to use resources efficiently. Traditional partitioning entails re-coding the applica-
tion functionality to use a middleware mechanism for communication between the dif-
ferent entities. In this paper, we present amomatic partitioning systerfor Java
applications. Our system, called J-Orchestra, utilizes compiler technology to partition
existing applications without manual editing of the application source code.

Automatic partitioning aims to satisfy functional constraints (e.g., resource availabil-
ity). For instance, an application may be getting input from sensors, storing it in a data-
base, processing it, and presenting the results on a graphical screen. All four hardware
resources (sensors, database, fast processor, graphical screen) may be on different
machines. Indeed, the configuration may change several times in the lifetime of the
application. Automatic partitioning can accommodate such requirements without
needing to hand-modify the application source code. Thus, automatic partitioning is a



sophisticated alternative to input-output re-direction protocols (Java servlets, telnet, X-
Windows [15]). Automatic partitioning can do whatever these technologies do, with
the additional advantage that the partitioning of the application is completely flexi-
ble—different parts of the application can run on different machines in order to mini-
mize network traffic or reduce server load. For instance, instead of using X-Windows
to send graphics over the network, one can keep the code generating the graphics on
the same site as the graphics hardware.

J-Orchestra operates at the Java bytecode level and rewrites the application code to
replace local data exchange (function calls, data sharing through pointers) with remote
communication (remote function calls through Java RMI [18], indirect pointers to
mobile objects). The resulting application is guaranteed to have the same behavior as
the original one (with a few, well-identified exceptions). J-Orchestra receives input
from the user specifying the network locations of various hardware and software
resources and the code using them directly. A separate profiling phase and static analy-
sis are used to automatically compute a partitioning that minimizes network traffic.

Although the significance of J-Orchestra may appear Java-specific, there is a general
conceptual problem that J-Orchestra is the first system to solve. This is the problem of
supporting transparent reference indirection in the presence of unmodifiable code.
More specifically, J-Orchestra is one of many systems that work by changing all direct
references to objects into indirect references (i.e., references to proxy objects). This
approach is hard to implement transparently when the program consists partly of
unmodifiable code. We show that J-Orchestra can “work around” unmodifiable code,
ensuring that it is clearly isolated from modifiable code by dynamically “wrapping”
direct references to make them indirect (and vice versa), when the references are
passed from unmodifiable to modifiable code (and vice versa).

The result of solving the problems with unmodifiable code is that J-Orchestra is the
first automatic partitioning system that imposes no partitioning constraints on applica-
tion code. (We make a clear distinction between “automatic partitioning” systems and
general “Distributed Shared Memory” mechanisms in our related work discussion.)
Unlike previous systems (e.g., Addistant [19]—the most mature and closest alternative
to J-Orchestra in the design space) J-Orchestra can partition any Java application,
allowing anyapplication objecto be placed on any machine, regardless of how appli-
cation objects interact among them and with system objects sfstem objeatan be
remotely accessed from anywhere in the network, although it has to be co-located with
system objects that may potentially reference it. (The terms “application” and “sys-
tem” objects roughly correspond to instances of regular classes of a Java application,
and of Java system classes with native dependencies, respectively.)

In this paper, we present the main elements of the J-Orchestra rewrite engine. We
describe the J-Orchestra rewrite algorithm, discuss its power and detail how J-Orches-
tra deals with various features of the Java language. Finally, we examine some J-
Orchestra optimizations and present performance measurements that demonstrate the
advantage of J-Orchestra over input/output redirection with X-Windows.
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Fig. 1. An overview of the J-Orchestra partitioning process

2 System Overview

We will give here a high-level overview of the operation of J-Orchestra from the per-
spective of a user (see Fig. 1). Many important details are elided—they will be added
in the next few sections. Some low-level details will be left unspecified as they may
soon change. For instance, currently the interaction of the user and the J-Orchestra sys-
tem is done using scripts and XML-based configuration files, but a complete GUI that
will hide many of these details will be available by the time of publication.

The user interaction with the J-Orchestra system consists of specifying the mobility
properties and location of application objects. J-Orchestra converts all objects of an
application intoremote-capableobjects—i.e., objects that can be accessed from a
remote site. Remote-capable objects can be edhehored(i.e., they cannot move

from their location) ormobile (i.e., they can migrate at will). For every class in the
original application, or Java system class potentially used by application code, the user
can specify whether the class instances will be mobile or anchored. For mobile classes,
the user needs to also describe a migration policy—a specification of when the objects
should migrate and how. For anchored classes, the user needs to specify their location.
Using this input, thel-Orchestra translatomodifies the original application and sys-

tem bytecode, creates new binary packages, produces source code for helper classes
(proxies, etc.), compiles that source code, and creates the final distributed application.

Specifying the properties (anchored or mobile, migration policy, etc.) of an application

or system class is not a trivial task. A wrong choice may yield an inefficient or incor-
rect distributed application. For instance, many system classes have interdependencies
so that they all need to be anchored on the same site for the application to work cor-
rectly. To ensure a correct and efficient partitioning, J-Orchestra offers two tools: a
profiler and aclassifier(Fig. 1).

The profiler is the simpler of the two: it reports to the user statistics on the interdepen-



dencies of various classes based on (off-line) profiled runs of the application. With this
information, the user can decide which classes should be anchored together and where.
J-Orchestra includes heuristics that compute a good partitioning based on profiling
data—the user can run these heuristics and override the result at will.

The J-Orchestra classification algorithm is responsible for ensuring the correctness of
the user-chosen partitioning. The classifier analyzes classes to find any dependencies
that can prevent them from being fully mobile. One of the novelties of J-Orchestra is
that regular application classes can almost always be mobile. Nevertheless, Java sys-
tem classes, as well as some kinds of application classes, may have dependencies that
force them to be anchored. As discussed in Section 4, example dependencies include
an implementation in native (i.e., platform-specific) code, possible access to instances
of the class from native code, inheriting from a class that is implemented in native
code, etc. The interaction of the user with the classifier is simple: the classifier takes
one or more classes and their desired locations as input and computes whether they can
be mobile and, if not, whether the suggested locations are legal and what other classes
should be co-anchored on the same sites. The user interacts with the classifier until all
system classes have been anchored correctly.

In the next sections, we describe the J-Orchestra classification and translation algo-
rithms in detail.

3 Rewrite Strategy Overview

3.1 Main Insights

J-Orchestra creates an abstraction of shared memory by allowing references to objects
on remote JVMs. That is, the J-Orchestra rewrite converts all references in the original
application intandirect references-i.e., references tproxy objectsThe proxy object

hides the details of whether the actual object is local or remote. If remote methods
need to be invoked, the proxy object will be responsible for propagating the method
call over the network. Turning every reference into an indirect reference implies sev-
eral changes to application code: for instancenpal statements have to be rewritten

to first create a proxy object and return it, an object has to be prevented from passing
direct references to itselfhjs ) to other objects, etc. If other objects need to refer to
data fields of a rewritten object directly, the code needs to be rewritten to invoke acces-
sor and mutator methods, instead. Such methods are generated automatically for every
piece of data in application classes. For instance, if the original application code tried
to increment a field of a potentially remote object directly, aslira_field++ , the

code will have to change intol.set_a_field(ol.get_a_field()+1) . (This

rewrite will actually occur at the bytecode level.)

The above indirect reference techniques are not novel (e.g., see JavaParty [8], as well
as the implementation of middleware like Java RMI [18]). The problem with indirect
reference techniques, however, is that they do not work well when the remote object
and the client objects are implemented unmodifiable codeTypically, code is
unmodifiable because it is native code—i.e., code in platform specific binary form. For



instance, the implementation of many Java system classes falls in this category.
Unmodifiable code may be pre-compiled to refer directly to another object’s fields,
thus rendering the proxy indirection invalid. One of the major novel elements of J-
Orchestra is the use of indirect reference techniques even in the presence of unmodifi-
able code.

3.2 Handling Unmodifiable Code

To see the issues involved, let us examine some possible approaches to dealing with
unmodifiable code. We will restrict our attention to Java but the problem (and our solu-
tion) is general: pre-compiled native code that accesses the object layout directly will
cause problems to indirect reference approaches in any setting.

If the client code (i.e., holder of a reference) of a remote object is not modifiable,
but the code of the remote object is modifiable, then we can use “name indirec-
tion”: the proxy class can assume the name of the original remote class, and the
remote class can be renamed. This is the “replace” approach of the Addistant sys-
tem [19]. The problem is that the client may expect to access fields of the remote
object directly. In this case, the approach breaks.

If the client code (i.e., holder of a reference) of a remote object is modifiable but
the code of the remote object is not, then we can change all clients to refer to the
proxy. This is the “rename” approach of the Addistant system. This case does not
present any problems, but note that the Addistant approach is “all-or-nate”.
clients of the unmodifiable class must be modifiable, or references cannot be
freely passed around (since one client will refer to a proxy object and another to
the object directly).

If the client code (i.e., holder of a reference) of a remote object is not modifiable
and the code of the remote object is also not modifiable, no solution exists. There
is no way to replace direct references with indirect references. Nevertheless, the
key observation is that unmodifiable clients can refer to the remote object directly,
while modifiable clients refer to it indirectly. In this way, although unmodifiable
objects cannot be placed on different network sites when they reference each
other, modifiable objects can be on a different site than the unmodifiable objects
that they referencd his is the approach that J-Orchestra followsdirect conse-
quence is that (unlike the Addistant rewrite) the semantics of the application does
not affect its ability to be partitioned. An application object (instance of a modifi-
able class) can be placed anywhere on the network, regardless of which Java sys-
tem objects it accesses and how.

For this approach to work, it must be possible to create an indirect reference from
a direct one and vice versa, at application run-time. The reason is that references
can be passed from modifiable to unmodifiable code and vice versa by using them
as arguments or results of a method call. Fortunately, this conversion is easy to
handle since all method calls are done through proxies. Proxies for unmodifiable
classes are the only way to refer to unmodifiable objects from modifiable code.
When a method of such a proxy is called, the reference arguments need to be
unwrappecdbefore the call is propagated to the target object. Unwrapping refers to



creating a direct reference from an indirect one. Similarly, when a method of such
a proxy returns a reference, that reference needstodygped a new indirect ref-
erence (i.e., reference to a proxy object) is created and returned instead.

A consequence of the J-Orchestra rewrite algorithm is that is supports object mobility.

If an object can only be referenced through proxies, then its location can change trans-
parently at run-time. Thus, for instance, regular application objects in a “pure Java”
application can migrate freely to other sites during application execution. (An excep-
tion is the case of application classes that extend system classes other than the default
subtyping rootjava.lang.Object —see Section 4.2.2.) In contrast, many instances

of Java system classes are remotely accessible but typically cannot migrate, as they
may be accessed directly by native code.

4 Rewrite Mechanism

In this section, we discuss in concrete detail the J-Orchestra rewrite model. As
described in Section 2, J-Orchestra distinguishes between anchored and mobile
classes. Unmodifiable classes have to be anchored, but modifiable classes can be either
anchored or mobile. The J-Orchestra mechanisndaskificationandtranslationare

entirely separate. The purpose of the J-Orchestra classifier is to determine whether an
object should be anchored (and where) or mobile. This algorithm could change in the
future, while the translation mechanism for mobile classes, anchored unmodifiable
classes, and anchored modifiable classes stays the same. Similarly, the translation
mechanism for the three categories of classes can change, even if the way we deter-
mine the category of a class remains the same.

In the following sections, we will blur the distinction between classes and their
instances when the meaning is clear from context. For instance, we write #lass
refers to clas8” to mean that an instance afmay hold a reference to an instanceBof

4.1 Classification

Classes may have to be anchored if they have native methods or if they may potentially
be manipulated by native code. For example, J-Orchestra’s rewrite engine deems
java.lang.ThreadGroup anchored because a reference ttheeadGroup can be
passed to the constructor of cl@sg.lang. Thread , which has native methods.

Fig. 2 shows the different categories in which classes are classified by J-Orchestra. The
classification criteria for the vast majority of classes can be summarized as follows.
(Some exceptions will be discussed individually.)

* Anchored Unmodifiable Classeé classC is anchored unmodifiable if it has
native methods, or references@mbjects can be passed between modifiable code
and an anchored unmodifiable clasdn the latter case, classeésanduU need to be
anchored on the same network site.

For simplicity, we assume in this paper that the application to be partitioned is
written in pure Java (i.e., the only access to native code is inside Java system
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Fig. 2. The possible categories of classes. Unmodifiable classes need to be
anchored, but both system and application classes can be modifiable and even
modifiable classes may be anchored (by need or by choice). For simplicity, we

ignore the possibility of unmodifiable application classes.

classes). Thus, application classes are modifiable—only system classes can be
unmodifiable. This is the standard usage scenario for J-Orchestra. It is straightfor-

ward to generalize our observations to applications that include nativé code.

* Anchored Modifiable ClasseA class is anchored modifiable if it is a modifiable
application class that extends an anchored unmodifiable class (other than
java.lang.Object ). These classes need to be anchored on the same site as their
superclasses.

Additionally, a modifiable class may be anchored by choice (see Section 5.1).

* Mobile ClassesMobile classes are all classes that do not fall in either of the above
two categories. All classes in a pure Java application that do not extend system
classes are mobile. Note, however, that Java system classes can also be mobile, as
long as they do not call native code and they cannot be passed to/from anchored
system classes. In this case, instances of the system class are used entirely in
“application space” and are never passed to unmodifiable code. The implementa-
tion of such classes can be replicated in a different (non-system) package and
application code can be rewritten to refer to the new class. The system class can be
treated exactly like a regular application class using this approach.

Note that static inspection can conservatively guarantee that references to a system
classC never cross the system/application boundary. As long as no references to

its superclasses (other thama.lang.Object ) or to arrays of these types appear in

the signatures of methods in anchored system classes, it is safe to create a mobile
“application-only”  version. (Interface access or access through or
java.lang.Object references is safe—a proxy object is indistinguishable from the
original object in these cases.) As a consequence, the categorization of system classes
into mobile and anchored is robust with respect to future changes in the implementa-
tion of Java library classes—the partitioning remains valid as long as the interfaces are
guaranteed to stay the same.

1. If the application includes native code, our guarantees will need to be adjusted. For an
extreme example, if native code in a single method accesses fields of all application classes
directly, then no partitioning can be done, since all application classes will need to be
anchored on the same site.



compute_co-artored (A){
AS := set of all mutable system classes and all array types
A := A Superclasses(A) Subclasses(A)
do {
AS =AS-A
AArg := MethodArguments(A)
AArg := AArg O Superclasses(AArg) Subclasses(AArd) Constituents(AArg)
ArgS := ASn AArg
A:=A0ArgS
} while (ArgSz 0)
return A

}

Fig. 3. J-Orchestra algorithm to compute anchored unmodifiable classes

More concretely, the J-Orchestra algorithm to compute anchored unmodifiable classes
can be seen in set pseudo-code notation in Fig. 3. This algorithm finds the classes that
need to be anchored on the same site as any one of the classes of an inligBget
changing the input sef, we adapt this algorithm for several different purposes
throughout J-Orchestra. The auxiliary set routines used in this algorithm are defined as
follows: Super(Sub)classes(Xgturns the set of all super(sub)classes of classes in set
X; MethodArguments(Xeturns the set of all argument and return types of all methods

of all classes irX; Constituents(Xyeturns the set of all constituent types of all array
types inX. For instance, an array typg[]  has constituent typgg] andT.

We should mention that, anchoring system classes together with other related system
classes typically does not inhibit the meaningful partitioning of system resources. For
instance, we have used J-Orchestra to partition several applications so that the graphics
display on one machine, while disk processing, sound output, keyboard input, etc. are
provided on remote computers. This is possible because classes within the same Java
system package reference mostly each other and very rarely system classes from other
packages. This property means that anchoring group boundaries commonly coincide
with package boundaries. For example, all the classes frojavthewt package can

be anchored on the same machine that handles the user interface part of an application.
This arrangement allows anchored system classes to access each other directly while
being remotely accessible by application classes through proxies.

As an advanced technical note, we should mention that less conservative classification
rules can also be applied to guarantee that more system classes can be made mobile.
For instance, if a system class never accesses native code, never has its fields directly
referenced by other system classes (i.e., all access is through methods), and its
instances are passed from application classes to system classes but not the other way,
then the class can be mobile by using a “subtype” approach: a subtype of the system
class can be created in an application package. The subtype is used as a proxy—none
of its original data fields are used. Nevertheless, the subtype object can be safely
passed to system code when the supertype is expected. The subtype object itself prop-



agates all method calls to an actual mobile object. This technique is applicable as long
as the original system class is riioal . We already use this technique in J-Orchestra
but not automatically—manual intervention is required to enable this transformation
on a case-by-case basis when it seems warranted. A good example is the
java.lang.Vector class. Vectors are used very often to pass data around and it
would be bad for performance to restrict their mobility: vectors should migrate where
they are needed. Nevertheless, many graphical applications pass vectors to Swing
library anchored system classes—e.g.,jflvax.swing.table.DefaultTableM-

odel class has methods that expect vectors. All the aforementioned conditions are true
for vectors: thevector class has no native methods, classes in the Swing library do
not access fields of vector objects directly (only through methods), and vectors are
only passed from application to system code, but not the other way. Thereéoter,

can be safely turned into a mobile class in this case.

For a more accurate determination of whether system classes can be made mobile, data
flow analysis should be employed. In this way, it can be determined more accurately
whether instances of a class flow from application code to system code. So far, we
have not needed to exploit such techniques in J-Orchestra—the type system has been a
powerful enough ally in our effort to determine which objects can be made mobile.

4.2 Translation
4.2.1 Anchored Unmaodifiable (System) Classes

J-Orchestra does not modify anchored system classes but produces two supporting
classes per anchored system class. These are a proxy classeandte application-
system translatofor justapplication-system translatprA proxy exposes the services

of its anchored class to regular application classes. A remote application-system trans-
lator enables remote execution and handles the translation of object parameters

between the application and system layeRoth proxy classes and remote applica-
tion-system translator classes are produced in source code form and translated using a
regular Java compiler. We will now examine each of these supporting classes in detail.

A proxy is a front-end class that exposes the method interface of the original system
class. It would be impossible to put a proxy into the same package as the original sys-
tem class: system classes reside in system packages that J-Orchestra does not modify.
Instead, proxies are placed in a different package and have no relationship to their sys-
tem classes. Proxy naming/package hierarchies are isomorphic to their corresponding
system classes. For example, a proxy fawa.lang.Thread is called

2. The existence of a separate application-system translator is an RMI-specific implementation
detail—under different middleware, the translator functionality could be folded inside the
proxy. Under RMI, classes need to explicitly declare that they are remotely accessible (e.g.,
by inheriting from clas&nicastRemoteObject ). Therefore, unmodifiable system classes
cannot be made remotely accessible, but their translator can. Separate application-system
translators simplify our implementation because system classes wrapped with an applica-
tion-system translator can be treated the same as application classes.



anchored.java.lang.Thread . To make remote execution possible, all modifiable
classes that reference the original system class have to now reference the proxy class
instead. This is accomplished by consistently changing the constant pools of all the
modifiable binary class files. The following example demonstrates the effect of those
changes as if they were done on the source code level for clarity reasons.

/[Original code: client of java.lang.Thread
java.lang.Thread t = new java.lang.Thread (...);
void f (java.lang.Thread t){ t.start (); }

//Modified code
anchored.java.lang.Thread t =
new anchored.java.lang.Thread (...);
void f (anchored.java.lang.Thread t) { t.start (); }

All the object parameters to the methods of a proxy are either immutable classes such
asjava.lang.String or other proxies. The rewrite strategy ensures that proxies for
anchored system classes do not reference any other anchored system classes directly
but rather through proxies.

The only data member of an anchored system proxy is an interface reference to the
remote application-system translator class. A typical proxy method delegates execu-
tion by calling an appropriate method in the remote instance member and then handles
possible remote exceptions. For instance,s#teriority method for the proxy of
java.lang.Thread is:

public final void setPriority(int arg0){
try { _remoteRef.setPriority (arg0); }
catch (RemoteException e) { e.printStackTrace (); }

}

The _remoteRef member variable can point to either the remote application-system
translator class itself or its RMI stub. In the first case, all method invocations will be
local. Invocations made through RMI stubs go over the network, eventually getting
handled by the system object on a remote site.

Application-system translators enable remote invocation by extending

java.rmi.server.UnicastRemoteObject 23 Additionally, they handle the transla-

tion of proxy parameters between the application and user layers. Before a proxy refer-
ence is passed to a method in a system class, it needs to be unwrapped. Unwrapping is
the operation of extracting the original system object pointed to by a proxy. If a system
class returns an instance of another system class as the result of a method call, then that
instance needs to be wrapped before it is passed to the application layer. Using wrap-

3. While this is not the only way to achieve remote semantics (a class can simply implement
java.rmi.Remote and then usegavax.rmi.PortableRemoteObject.export() to
export objects later on)JnicastRemoteObject ~ provides several important services (e.g.,
identity), and so far we have chosen to avoid re-implementing them.



ping, J-Orchestra manages to be oblivious to the way objects are created. Even if sys-
tem objects are created by unmodifiable code, they can be used by regular application
classes: they just need to be wrapped as soon as they are about to be referenced by
application code.

The following example demonstrates hbwrapping-unwrappingworks in methods
setForeground and getForeground  of the application-system translator for
java.awt.Component

public void setForeground (anchored.java.awt.Color arg0) {
_localClassRef.setForeground
((java.awt.Color)Anchored.unwrapSysObj (arg0));
}

public anchored.java.awt.Color getForeground () {
return
(anchored.java.awt.Color)
Anchored.wrapSysObj(_localClassRef.getForeground());
}

_localClassRef  points to an instance of the original system clgs#(awt.Com-
ponent ) that handles all method calls made through the application-system translator.

4.2.2 Anchored Modifiable Classes

Anchored modifiable classes are the application classes that inherit from anchored sys-
tem classes or any otherwise modifiable class that is anchored by choice. Anchored
modifiable classes are handled with a translation that is identical to the one for
anchored unmodifiable classes, except for one aspect. The defining distinction between
unmodifiable and modifiable anchored classes is that the latter can be changed so that,
if they access other classes’ fields directly, such accesses can be replaced with calls to
accessor and mutator methods. In this way, other classes referenced by anchored mod-
ifiable classes do not need to be anchored.

4.2.3 Mobile Classes.

Mobile classes are able to migrate to various network sites during the run of a pro-
gram. The migration currently supported by J-Orchestrayischronous objects
migrate in response to run-time events, such as passing a mobile object as a parameter
to a remote method. Migration allows us to exploit data locality in an application. For
instance, when a remote method call occurs, it can be advantageous to have a mobile
object parameter move temporarily or permanently to the callee’s network site. All
standard object mobility semantics (e.g., call-by-visit, call-by-move [10]) can be sup-
ported in an application rewritten by J-Orchestra.

J-Orchestra translates mobile classes in the original application (and the replicated
mobile system classes) intqpeoxy classand aremote classProxy classes are created

in source code form, while remote classes are produced by bytecode rewriting of the
original mobile class. Proxies for mobile classes are very similar to the ones for



anchored classes. The only difference is thahobile proxy assumes the exact name
and method interface of the original classOrchestra adds an “remote ” suffix to

the original class name. The clients of a mobile class access its proxy in exactly the
same way as they used to access the original class.

Mobile class proxies mimic the inheritance structure of their original classes. The
remote semantics is achieved by changing the superclass of the base (topmost) proxy
from java.lang.Object to java.rmi.server.UnicastRemoteObject

The example below summarizes the rewrite in source code form (although in reality
the original class and the remote class only exist in bytecode form).

//Original class declaration
class A extends B implements | {...}

/IProxy class declaration.
//B or one of its ancestors inherit from UnicastRemoteObject
class A extends B implements |, Proxy { ... }

/IRemote class declaration
//Ibody of A__remote is same as body of original A
class A__remote extends B__remote implements |, Remote {...}

Some care needs to be taken during binary modification of a class, to ensure that the
types expected match the ones actually used. For instance, the name offarndasds

to change t®d__remote , but most references to typge(e.g., as the type of a method
parameter) need to continue referringfte-the proxy type is the right type for refer-
ences ta\ objects in the rewritten application.

4.3 Handling of Java Language Features

In this section, we describe how J-Orchestra handles various Java language features.
Some of the techniques described here are similar to the ones used by JavaParty (but
JavaParty operates at the source code level while J-Orchestra is a bytecode translator).
Due to lack of space, we omit some of the more involved topics, like dealing with
arrays and object identity. The interested reader can find more information in [20].

Maintaining exactly the local execution semantics is not always possible or efficient.
We will identify the few features for which J-Orchestra will not guarantee, by need or
by choice, that the partitioned application will behave exactly like the original one.

4.3.1 Static Methods and Fields

J-Orchestra has to handle remote execution of static methods. This also takes care of
remote access to static fields: just like with member fields, J-Orchestra replaces all
direct accesses to static fields of other classes with calls to accessor and mutator meth-
ods. In order to be able to handle remote execution of static methods, J-Orchestra cre-
ates static delegator classes for every original class that has any static methods. Static
delegators extenghva.rmi.server.UnicastRemoteObject and define all the



static methods declared in the original class.

/[Original class

class A {
static void foo (String s) {...}
static int bar () {...}

}

//Static Delegator for A--runs on a remote site
class A__StaticDelegator
extends java.rmi.server.UnicastRemoteObject {
void foo (String s) { A__remote.foo (s); }
int bar () { return A__remote.bar (); }

}

For optimization purposes, a static delegator for a class gets created only in response to
calling any of the static methods in the proxy class. If no static method of a class is
ever called during a particular execution scenario, the static delegator for that class is
never created. Once created, the static delegator or its RMI stub is stored in a member
field of the class’s proxy and is reused for all subsequent static method invocations.

A static delegator for a class shares the mobility properties of the class itself. While a
static delegator for an anchored class must be co-anchored on the same site, the static
delegator of a mobile class can potentially migrate at will, irrespective of the locations

of the existing objects of its class type.

4.3.2 Inheritance

Proxies, remote application-system translator classes, and remote classes all mimic the
inheritance/subtyping hierarchy of their corresponding original classes. Replacing
direct references with references to proxies preserves the original execution semantics:
a proxy can be used when a supertype instance is expected. Since it is not known
which particular proxy is going to be used to invoke a method, only the base class con-
tains the interface reference that is used for method delegation. This field is accessible
to all the subclasses’ proxies by havingthitected  access modifier.

4.3.3 Object Creation

Creating objects remotely is a necessary functionality for every distributed object sys-
tem. J-Orchestra proxies’ constructors work differently from other methods in order to
implement distribution policies (i.e., create various objects on given network sites).
First, a proxy constructor calls a special-purpose do-nothing constructor in its super
class to avoid the regular object creation sequence. A proxy constructor creates objects
using the services of thebject factory J-Orchestra’s object factory is an RMI service
running on every network node where the partitioned application operates. Every
object factory is parameterized with configuration files specifying a symbolic location
of every class in the application and the URLs of other object factories. Blgegt
factory clientkeeps remote references to all the object factories in the system. Object
factory clients determine object locations, handle remote object creations, and main-



tain various mappings between the created objects and their proxies. The following
example shows a portion of the constructor code in a proxy&lass

public A () {
/lcall super do-nothing constructor
super ((BogusConstructorArg)null);

llcheck if we are already initialized or are

/Icalled from a subclass

if ((null '=_remoteRef) || (lgetClass ().equals (A.class)))
return;

/ICall ObjectFactory
try { _remoteRef = (A) ObjectFactory.createObject(“A”); }
catch (RemoteExceptione) { ... }

}
4.3.4 “this”

Under the J-Orchestra rewrite, an object can refer to its own methods and variables
directly. That is, no proxy indirection overhead is imposed for access to methods
through thethis reference. Nevertheless, this means that J-Orchestra has to treat
explicit uses ofthis  specially. Recall that remote objects are generated by changing
the name of the original class at the bytecode level. When the name of a class changes
so does the type of all of its expliditis references. Consider the following example
showing the problem if no special care is taken:

/loriginal code
class A { void foo (B b) { b.baz (this); } }
class B { void baz (Aa){...} }

/lgenerated remote object for A
class A__remote {

void foo (B b) { b.baz (this); } //"this” is of type A__remote!
}

Methodbaz in classB expects an argument of type hence the calb.baz(this)

will fail, as this is of typeA_remote . J-Orchestra detects all such explicit uses of
this and fixes the problem by looking up the corresponding proxy object and replac-
ing this  with it. Furthermore, we can store the result of the proxy lookup in a local
variable and use that variable insteadré$ in future expressions. For example, the
rewritten bytecode foibo in this case would be:

aload_0O /Ipass “this” to locateProxy method
invokestatic Runtime.locateProxy
checkcast “A” //locateProxy returns Object, need a cast to “A”

astore_2 /Istore the located proxy object for future use
aload_1 /Noad b
aload_2 /lload proxy (of type A)

invokevirtual B.baz



At the bytecode level, it is somewhat involved to detect when the transformation
should be applied. Recognizing explicit useshi$ (as opposed to instances of the
aload_0 instruction used to reference the object’s own methods) requires a full stack
machine emulator for the bytecode instructions. The emulator needs to reconstruct
operations and operands from the bytecode stack-machine instruction architecture.
This is the only instance where we have found our transformations to be harder to
apply at the bytecode level than at the source code level (e.g., like JavaParty does).

4.3.5 Multithreading and Synchronization

The handling of synchronization is an important issue in guaranteeing regular Java
semantics for a partitioned multithreaded application. Java has no support for remote
synchronization: RMI does not support transparency of synchronization references—
all wait /notify  calls on remote objects are not propagated to the remote site (see
[18], section 8.1). Nevertheless, it is possible to build a distributed synchronization
mechanism that will guarantee semantics identical to regular Java for all partitioned
applications. On the other hand, such a mechanism will likely be complex and ineffi-
cient, especially if the distribution relies on an unmodified version of Java RMI. One of
the noteworthy issues with synchronization is the possibility of self-deadlocks if thread
identity is not maintained when the flow of control moves over the network. We will
not describe here the complications of distributed synchronization—a good description
of both the problems and the possible solutions (also applicable to J-Orchestra) can be
found in the documentation of version 1.05 of JavaParty [8].

In the near future, we plan to evolve the J-Orchestra synchronization mechanism, mak-
ing this description of transient interest. The current mechanism is rudimentary and
incomplete. First, thread identity is not maintained when the flow of control crosses the
network, creating the possibility of deadlocks. Second, the identity of locks is guaran-
teed whersynchronized = methodsare used (which is the most common Java syn-
chronization technique) but not necessarily whgnchronized  code blocksare

used. When code blocks are used, lock identity is maintained per-sitesyhahro-

nized blocks are executed on the same machine, synchronization will work correctly
(barring the problems caused by not maintaining thread identity across machines).

The translation to maintain these properties is as follows: for synchronized methods,
we only have to ensure that the proxy “forwarder” method is not synchronized—the
original method on the remote object will perform the synchronization. For handling
wait /notify  /notifyAll calls on proxies, we globally detect all such calls and
replace them with calls to specially generated methods in the proxy objects (the origi-
nalwait /notify /notifyAll in java.lang.Object arefinal and cannot be over-
ridden). Proxies propagate alkit /notify /notifyAll calls to the remote objects
they represent. All remote objects (emote objects for mobile classes or system/
application translators for anchored classes) export methods that implemient

notify  /notifyAll semantics on the object.



4.3.6 Reflection and Dynamic Loading

Reflection can be used explicitly to render the J-Orchestra translation incorrect. For
instance, an application class may getGhject reference, query it to determine its
actual type, and fail if the type is a proxy. Nevertheless, the common case of reflection
that is used only to invoke methods of an object is compatible with the J-Orchestra
rewrite—the corresponding method will be invoked on the proxy object. In fact, one of
the first example applications distributed with J-Orchestra—the JShell command line
shell—uses reflection heavily.

We should note that offering full support for correctness under reflection is possible
and we have not done so for pure engineering reasons. For example, it is possible to
create a J-Orchestra-specific reflection library that will mimic the interface of the regu-
lar Java reflection routines but will take care to always hide proxies. All reflection
questions on a proxy object will instead be handled by the remote object. With byte-
code manipulation, we can replace all method calls to Java reflection functionality with
method calls to the J-Orchestra-specific reflection library. We have considered this task
to be too complex for the expected benefit.

Similar observations hold regarding dynamic class loading. J-Orchestra is meant for
use in cases where the entire application is available and gets analyzed, so that the J-
Orchestra classification and translation are guaranteed correct. Currently, dynamically
loading code that was not rewritten by J-Orchestra may fail because the code may try
to access remote data directly. Additionally, dynamically loading code that calls J-
Orchestra rewritten code may violate the security guarantees of the original application
(we discuss the problem in more detail in [20]). Nevertheless, one can imagine a loader
installed by J-Orchestra that takes care of rewriting any dynamically loaded classes
before they are used. Essentially, this would implement the entire J-Orchestra transla-
tion at load time. Unfortunately, classification cannot be performed incrementally:
unmodifiable classes may be loaded and anchored on some nodes before loading
another class makes apparent that the previous anchorings are inconsistent. The only
safe approach would be to make all dynamically loaded classes anchored on the same
network site.

4.3.7 Garbage Collection

Distributed garbage collection is a tough problem. J-Orchestra relies on the RMI dis-

tributed reference counting mechanism for garbage collection. This means that cyclic
garbage, where the cycle traverses the network, will never be collected. Nevertheless,
this aspect is orthogonal to the goal of J-Orchestra—the system just inherits the gar-
bage collection facility of the underlying middleware.

4.3.8 Inner Classes

On the Java language level, inner classes have direct access to all member fields
(including private and protected) of their enclosing classes. In order to enable this
access, the Java compiler introdusgathetionethods that access and modify member
fields of enclosing classes. Synthetic methods are not visible during compilation. This



clearly presents a problem for J-Orchestra since synthetic methods also need to be
accessed through a proxy. The code inside a synthetic proxy method accesses the syn-
thetic method of its remote class. Since proxies are created in source code form, no
Java compiler would be able to successfully compile them. Removing the synthetic
attributes from methods in remote classes eliminates the problem. The removal does
not violate the Java security semantics because there are no access restrictions for syn-
thetic methods to begin with.

4.3.9 System.out, System.in, System.err, System.exit, System.properties

Thejava.lang.System class provides access to standard input, standard output, and
error output streams (exported as pre-defined objects), access to externally defined
“properties”, and a way to terminate the execution of the JVM. In a distributed envi-
ronment, it is important to modify these facilities so that their behavior makes sense.
Different policies may be appropriate for different applications. For example, when
any of the partitions writes something to the standard output stream, should the results
be visible only on the network site of the partition, all the network sites, or one spe-
cially designated network site that handles I/O? If one of the partitions makes a call to
System.exit , should only the JVM that runs that partition exit or the request should
be applied to all the remaining network sites? J-Orchestra allows defining these poli-
cies on a per-application basis. For this purpose, J-Orchestra provides classes called
Remoteln , RemoteOut , RemoteErr , RemoteExit , andRemoteProperties whose
implementation determines the application-specific policy. For example, all references
to System.out are replaced wittlRemoteOut.out() in all the rewritten code. An
implementation oRemoteOut.out()  can return a stream that redirects all the mes-
sages to a particular network site, for example.

5 Performance

5.1 Overhead and Limited Rewrite

As mentioned earlier, modifiable classes may be anchored by choice. In fact, it is a
common usage scenario for J-Orchestra to try to make mobile only very few classes.
We call this the J-Orchestiamited rewrite model. The reason to limit which classes

are mobile has to do with performance. The J-Orchestra rewrite adds some execution
overhead even when mobile objects are used entirely locally. The most significant
overheads of the J-Orchestra rewrite are one level of indirection for each method call
to a different application object, two levels of indirection for each method call to an
anchored system object, and one extra method call for every direct access to another
object’s fields. The J-Orchestra rewrite keeps overheads as low as possible. For
instance, for an application object created and used only locally, the overhead is only
one interface call for every virtual call, because proxy objects refer directly to the tar-
get object and not through RMI. Interface calls are not expensive in modern JVMs
(only about as much as virtual calls [1]) but the overall slowdown can be significant.

The overall impact of the indirection overhead on an application depends on how much
work the application’s methods perform per method call. A simple experiment puts the



costs in perspective. Table 1 shows the overhead of adding an extra interface indirec-
tion per virtual method call for a simple benchmark program. The overall overhead
rises from 17% (when a method performs 10 multiplications, 10 increment, and 10 test
operations) to 35% (when the method only performs 2 of these operations).

Table 1. J-Orchestra indirection overhead as a function of average work per
method call (a billion calls total)

Work (multiply, Original Time Rewritten Time Overhead
increment, test)
2 35.17s 47.52s 35%
4 42.06s 51.30s 22%
10 62.5s 73.32s 17%

Penalizing programs that have small methods is against good object-oriented design,
however. Furthermore, the above numbers do not include the extra cost of accessing
anchored objects and fields of other objects indirectly (although these costs are second-
ary). To get an idea of the total overhead for an actual application, we measured the
slowdown of the J-Orchestra rewrite using J-Orchestra itself as input. That is, we used
J-Orchestra to translate the main loop of the J-Orchestra rewriter, consisting of 41 class
files totalling 192KB. Thus, the rewritten version of the J-Orchestra rewriter (as well as
all system classes it accesses) became remote-capable but still consisted of a single
partition. In local execution, the rewritten version was about 37% slower (see Table 2).
Although a 37% slowdown of local processing can be acceptable for some applica-
tions, for many others it is too high.

By anchoring classes by choice, we ensure that their objects can refer to all other
objects on the same site with no overhead. These anchored classes will still be
remotely accessible, but their proxies are only used for true remote access. The limited
rewrite is particularly successful when most of the processing in an application occurs
on one network site and only some resources (e.g., graphics, sound, keyboard input)
are accessed remotely. We have used the limited rewrite to partition several applica-
tions that follow this pattern (e.g., a GUI-driven demo of the Java speech API, a graph-
ical display of real time statistics from another machine, etc.). In all cases, the
execution overhead from J-Orchestra indirection was practically zero.

5.2 Optimization: Lazy Remote Object Creation

Recall that remote objects extefula.rmi.server.UnicastRemoteObject to
enable remote execution. The constructor @ifva.rmi.server.UnicastRemo-

teObject  exports the remote object to the RMI run-time. This is an intensive process
that significantly slows down the overall object creation. J-Orchestra tries to avoid this
slowdown by employing lazy remote object creation for all the objects that might
never be invoked remotely. If a proxy constructor determines that the object it wraps is



to be created on the local machine, then the creation process does not go through the
object factory. Instead, kazy version of the remote object is created directly. A lazy
object is identical to a remote one with the exception of having a different name and
not inheriting fromjava.rmi.server.UnicastRemoteObject . A proxy continues

to point to such a lazy object until the application attempts to use the proxy in a remote
method call. In that case, the proxy converts its lazy object to a remote one using a spe-
cial conversion constructor. This constructor reassigns every member field from the
lazy object to the remote one. All static fields are kept in the remote version of the
object to avoid data inconsistencies.

Although this optimization may at first seem RMI-specific, in fact it is not. Every mid-
dleware mechanism suffers significant overhead for registering remotely accessible
objects. Lazy remote object creation ensures that the overhead is not suffered until it is
absolutely necessary. In the case of RMI, our experiments show that the creation of a
remotely accessible object is over 200 times more expensive than a single constructor
invocation. In contrast, the extra cost of converting a lazy object into a remotely acces-
sible one is about the same as a few variable assignments in Java. Therefore, it makes
sense to optimistically assume that objects are created only for local use, until they are
actually passed to a remote site. Considering that a well-partitioned application will
only move few objects over the network, the optimization is likely to be valuable.

The impact of speeding up object creation is significant in terms of total application
execution time. We measured the effects using the J-Orchestra code itself as a bench-
mark. The result is shown below (Table 2). The measurements are on the full J-Orches-
tra rewrite: all objects are made remote-capable, although they are executed on a single
machine. 767 objects were constructed during this execution. The overhead for the ver-
sion of J-Orchestra that eagerly constructs all objects to be remote-capable is 58%,
while the same overhead when the objects are created for local use is less than 38% (an
overall speedup of 1.15, or 15%).

Table 2. Effect of lazy remote object creation and J-Orchestra indirection

Original time Indirect lazy Overhead Indirect non-lazy Overhead

6.63s 9.11s 37.4% 10.48s 58.1%

5.3 Performance Comparison to X-Windows

J-Orchestra is an attractive alternative to input/output redirection technologies like X-
Windows and telnet. A good partitioning using J-Orchestra can avoid transferring
redundant data (e.g., graphics that do not change, or inefficient representations) over
the network. In this section, we compare the performance of J-Orchestra to X-Win-
dows, used to display graphics on a remote host.

All the experiments described are partitioned using the J-Orchestra limited rewrite:
only a handful of classes are made mobile, most classes are made remotely accessible
and get anchored on different sites. In all experiments, we measured the run time of the



original Java application, as well as the run time of the rewritten (i.e., remote-capable)
version of the application but executing in a single partition. These two baseline results
were identical—the limited rewrite only adds indirection to a tiny proportion of the
total objects created in our example programs.

We used JDK 1.3 on two Sun Ultra 10 machines (Sparc Il 440MHz processor) con-
nected with a 100Mbit Ethernet network for these experiments.

5.3.1 Window Drawing

We created three different tests of window operations. The first opens an empty remote
window. The second opens a remote window and displays 100 text buttons on it. The
third opens a remote window and displays 100 graphical buttons on it. In all three
cases, the window is repainted 10 times. Each of the three experiments has two ver-
sions: one where all drawing operations are initiated from the window object itself and
one where the (re-)painting is initiated from a different object. The reason for this last
distinction is that we want to produce a more “realistic” comparison by initiating the
operations remotely. That is, in the J-Orchestra case, there will be operations over the
network for each re-painting, although the graphics for the buttons themselves will
never need to be transferred over the network.

The results (run times) are shown below (all numbers are averages of 3 runs that varied
by at most 0.5s). The baseline is the run time of a local version.

Table 3. Version 1 of window experiments

Window + 100 text Window + 100

Experiment/System Empty window buttons graphics buttons
Baseline 2.9s 7.2s 6.6s
X-Windows 4.7s 8.2s 15.8s
J-Orchestra 3.1s 7.7s 6.6s

Table 4. Version 2 of window experiments

Experiment/System Empty window Window + 100 text Window + 100

buttons graphics buttons
Baseline 2.7s 7.6s 6.8s
X-Windows 4.5s 8.5s 16.3s
J-Orchestra 4.9s 8.4s 7.7s

Version 1 of the above experiment shows the benefit of J-Orchestra, but the partition-
ing can be considered “unfairly optimal”. All the graphics are produced in response to
a single network operation. Therefore, J-Orchestra performs very close to the baseline



in the Version 1 experiment. Version 2, however, is more realistic: all re-drawing is ini-
tiated over the network. In this case, J-Orchestra performs about the same as X-Win-
dows, except for the case of graphics buttons. In this case, X-Windows has to transfer
the graphical icon over the network, while J-Orchestra avoids this overhead altogether.
As a result, J-Orchestra is more than twice as fast as X-Windows. Of course, a slower
network (e.g., 10Mbit ethernet, ISDN, or modem connection) would accentuate these
results dramatically. We should mention that the window with text buttons displays
incorrectly (empty window) in the case of X-Windows.

5.3.2 Simple Animation

In this benchmark, we test a small but fully usable third-party application. This experi-
ment is representative of the way X-Windows and J-Orchestra will be used in practice
to graphically display real time data on a different machine from the one producing
them. It consists of a Java analog clock program (one of the many written as Java
graphics demos). The program draws a simple face of a digital/analog clock (4 hour
numbers, three moving clock hands, and a digital representation of the current time).
With X-Windows, we just run the clock application on one machine and display the
results on another. With J-Orchestra, however, we can transfer only the interesting data
(aDate object) over the network and do all the drawing locally. To turn this into a use-
ful benchmark, we changed it very slightly, so that the clock updates the time on the
screen as quickly as possible—i.e., the program keeps polling the system for time as
often as it can and displays the results. The measured quantity is then the frames-per-
second attained on the remote display. In other words, we are treating the clock display
as a real-time animation and measure the animation quality.

The measurements (frames per second) for this benchmark appear in Table 5. Apart
from the original clock, we also created two stripped-down versions that only display
the “analog” part of the clock. The first only draws the clock hands. The second draws
the clock hands as well as the numbers “3”, “6”, “9”, and “12” on the face of the clock.

Table 5. Clock Experiment

Experiment/System Original clock ClOCEaWnEZjUSt Clo;ﬁygguﬁinds
Baseline 86 fps 294 fps 87 fps
X-Windows 22 fps 289 fps 32 fps
J-Orchestra 64 fps 175 fps 70 fps

For the original clock application, J-Orchestra is almost three times faster than X-Win-
dows. The reason is that X-Windows needs to transfer over the network a lot of graph-
ical information that does not change (e.g., the kind of font used for the displayed text,
text that does not change on the screen, etc.). When just the clock hands are drawn, J-
Orchestra is a little slower than X-Windows. When, however, as little as the four hour



numbers (3, 6, 9, and 12) need to be drawn on the face of the clock, J-Orchestra again
is more than twice as fast as X-Windows.

5.3.3 Analysis

We analyzed the network traffic in order to show the trade-off in the above experi-
ments. Due to lack of space, we cannot present the full results (bytes per request, effect
of clustering, etc.) but the main observations are clear: X-Windows has a lower over-
head per network transfer, but J-Orchestra has the flexibility to place the drawing code
on the machine where the graphics will be displayed. More specifically, the X protocol
[15] is fairly inefficient in terms of the amount of data transferred in order to send
graphics over the network. Nevertheless, compared to a heavyweight implementation
of general purpose middleware like Java RMI, the X protocol is much better suited for
transferring graphics. A major difference is that RMI is a synchronous protocol: most
X protocol requests do not generate replies, but RMI remote method calls will always
need to generate network traffic when an operation completes. Additionally, the X pro-
tocol allows multiple remote drawing requests to be clustered together and sent in a
single TCP segment. J-Orchestra outperforms X-Windows only because it transfers
much less data over the network (e.g., only the current time instead of full graphical
information for the clock display, no font information, etc.).

6 Related Work

Distributed computing has been the main focus of systems research in the past two
decades. Therefore, there is a wealth of work that exhibits similar goals or methodolo-
gies to ours. We will separate closely related work (approaches that use similar tech-
niques to ours) from indirectly related work (work with similar goals but significantly
different approaches).

6.1 Directly Related Work

Several recent systems other than J-Orchestra can also be classified as automatic parti-
tioning tools. In the Java world, the closest approaches are the Addistant [19] and Pan-
gaea [16] systems. The Coign system [9] has promoted the idea of automatic
partitioning for applications based on COM components.

Addistant [19] is the closest alternative to J-Orchestra in the design space. J-Orchestra
has three advantages over Addistant. First, J-Orchestra has a far more general rewrite
engine allowing arbitrary partitioning of the application: we discussed earlier how J-
Orchestra allows any partitioning along application boundaries. In contrast, Addistant
imposes limitations based on dependencies on unmodifiable code. For instance, Addis-
tant cannot make a class remotely accessible when the class is unmodifiable and has
unmodifiable clients. Second, J-Orchestra allows object mobility, allowing to take
advantage of locality. With Addistant, objects are created and used on the same net-
work site—they cannot move to be co-located with other objects that access them.
Third, J-Orchestra includes automatic analyses that ensure the correctness of a parti-
tioning and relieve the user from having to specify policies for each class. The Addis-



tant user has to explicitly specify whether instances of an unmodifiable class are
created only by modifiable code, whether an unmodifiable class is accessed by modifi-
able code, whether instances of a class can be safely passed by-copy, etc. This infor-
mation is application-specific and getting it wrong results in a partitioning that violates
the original application semantics.

Coign [9] is an automatic partitioning system for software based on Microsoft's COM
model. Although Coign is a pioneering system, it suffers from two drawbacks. First,
Coign is not applicable to many real-world situations: although Windows software
often exports coarse-grained COM components, very few real-world applications are
written as collections of many fine-grained COM components. The applications that
constitute success cases for Coign (mainly the Octarine word processor) were experi-
mental and written specifically to showcase that COM is a viable platform for develop-
ing applications from many small components. The second drawback is technical.
Coign does not try to solve the hard problems of automatic partitioning: it does not dis-
tribute components when they share data through memory pointers. Such components
are deemed non-distributable and are located on the same machine. Practical experi-
ence with Coign [9] showed that this is a severe limitation for the only real-world
application included in Coign’s example set (the Microsoft PhotoDraw program). The
Coign approach would be impossible in the case of Java: almost all program data are
accessed through references in Java. No support for synchronous data mobility exists
in Coign, but the application can be periodically repartitioned based on its recent
behavior.

Pangaea [16][17] is an automatic partitioning system that has very similar goals to J-
Orchestra. Pangaea is based on the JavaParty [13] infrastructure for application parti-
tioning. Since JavaParty is designed for manual partitioning and operates at the source
code level, Pangaea is also limited in this respect. Thus, Pangaea cannot be used to
make Java system classes (which are supplied in bytecode format) remotely accessible.
Therefore, Pangaea has little applicability to real world situations, especially with lim-
ited manual intervention. For instance, much data exchange in Java programs happens
through system classes (e.g., collection classes,jdN@eutil.Vector ). If such
classes are not remotely accessible, all their clients need to be located on the same site,
making partitioning almost impossible for realistic applications.

Finally, we should mention that the JavaParty infrastructure [13][8] is closely related
to J-Orchestra. The similarity is not so much in the objectives—JavaParty only aims to
support manual partitioning and does not deal with system classes. The techniques
used, however, are very similar to J-Orchestra, especially for the newest versions of
JavaParty [8].

6.2 Indirectly Related Work

Automatic partitioning is essentially Ristributed Shared Memory (DSMgchnique.
Just like traditional DSM approaches, we try to create the illusion of a shared address
space, when the data are really distributed across different machines. Nevertheless,
automatic partitioning differs from traditional DSM work in one major aspegly the



application is allowed to change, not the run-time environméraditional DSM sys-

tems like Munin [5], Orca [3], and, in the Java world, CJVM [2], and Java/DSM [23]
use a specialized run-time environment in order to detect access to remote data and
ensure data consistency. The deployment cost of DSMs has restricted DSM applicabil-
ity to high-performance parallel applications. In contrast, automatically partitioned
Java applications work on original, unmodified Java Virtual Machines (JVMs), possi-
bly shipped with Web browsers. All modifications necessary are made directly to the
application, using compilation techniques. In this way, automatic partitioning has no
deployment cost, allowing it to be applied to regular applications and compete with
lightweight technologies like X-Windows.

Among distributed shared memory systems, the ones most closely resembling the J-
Orchestra approach are object-based DSMs, like Orca [3]. The Orca system has a ded
icated language and run-time system, but also has similarities to J-Orchestra in its
treatment of data at the object level, and its use of static analysis.

Mobile object systems, like Emerald [4][10] have similarities with J-Orchestra. Many
of the J-Orchestra ideas on implementing mobile objects and choosing appropriate
semantics for method invocations (synchronous object migration) have originated with
Emerald.

The Doorastha system [6] represents another piece of work closely related to auto-
matic partitioning. Doorastha allows the user to annotate a centralized program to turn
it into a distributed application. Unfortunately, all the burden is shifted to the user to
specify what semantics are valid for a specific class (e.g., whether objects are mobile,
whether they can be passed by-copy, etc.). The Doorastha annotations are quite expres-
sive in terms of how method arguments, different fields of a class, etc., are manipu-
lated. Nevertheless, programming in this way is tedious and error-prone: a slight error
in an annotation may cause insidious inconsistency errors.

The need for infrastructure to support application partitioning has been recognized in
the systems community. Proposals for such infrastructure (most recently, Protium [22])
usually try to address different concerns from those covered by J-Orchestra. High per-
formance is an essential element, with the infrastructure trying to hide the latency of
remote accesses. J-Orchestra aims at a much higher degree of automation, but for
applications with more modest network performance requirements.

Finally, we should mention that the overall approach of programming distributed sys-
tems as if they were centralized (“papering over the network”) has been occasionally
criticized (e.g., see the best known “manifesto” on the topic [21]). The main point of
criticism has been that distributed systems fundamentally differ from centralized sys-
tems because of the possibility of partial failure, which needs to be handled differently
for each application. Nevertheless, J-Orchestra can address this problem, at least par-
tially: although the input of the system is a binary application, the proxies for remote-
capable classes are produced in source code. Application-specific partial-failure han-
dling can be effected by manually editing the source code of the proxy classes and han-
dling the corresponding Java language exceptions. Thus, although J-Orchestra hides



much of the complexity of distribution, it allows the user to handle distribution-spe-
cific failure exactly like it would be handled through manual partitioning. Alternatively
viewed, the user can concentrate on the part of the application that really matters for
distributed computing: partial failure handling. This part is the only code that needs to
be written by hand in order to partition an application.

7 Status and Conclusions

J-Orchestra is work-in-progress, but most of the back-end functionality is in place, as
described in this paper. We have already used J-Orchestra to partition several realistic,
third-party applications. Among them are “J-Shell” (a command line shell implemen-
tation for Java), a graphical demo of the Java speech API (the user selects parameters
and a sound synthesizer composes phrases), an application for monitoring server load
and displaying real-time graphical statistics, and some small graphical demos and
benchmarks. All of the above were partitioned in a client-server model, where the 1/O
part of the functionality (graphics, text, etc.) is displayed on a client machine, while
processing or execution of commands takes place on a server. Our client machine is
typically a hand-held iPAQ PDA, running Linux. This environment is good for show-
casing the capabilities of J-Orchestra—even relatively uninteresting centralized appli-
cations become exciting demos when they are automatically turned into distributed
applications, partly running on a hand-held device that communicates over a wireless
network with a central server.

In the future, we intend to continue work on the J-Orchestra back-end, but at the same
time develop more front-end functionality. Currently, J-Orchestra uses Java RMI as its
distribution middleware. RMI has been criticized for its inefficiency, but offers useful
features for transparent distribution (e.qg., distributed reference counting). In the future,
we may select a more efficient middleware implementation (e.g., KaRMI [12]) when
such alternatives become more mature. Any middleware, however, will perform badly
if the application is not partitioned well and object mobility is not coordinated opti-
mally. Therefore, the greatest future challenge for J-Orchestra will be to develop
mechanisms that automatically infer detailed object migration strategies in response to
synchronous events. (For example, a strategy could be as detailed as “when a method
foo is called, all its arguments and all data reachable from its arguments in up to three
indirections should migrate to the method’s execution site.”)

A common question we are asked concerns our choice of the name “J-Orchestra”. The
reason for the name is that there is a strong analogy between application partitioning
and the way orchestral music is often composed. Many orchestral pieces are not origi-
nally written for orchestral performance. Instead, only a piano score is originally com-

posed. Later, an “orchestration” process takes place that determines which instruments
should play which notes of the completed piano score. There are many examples of
orchestrating piano music that was never intended by its composer for orchestral per-
formance. There are several examples of piano pieces that have several brilliant but
totally different orchestrations. With J-Orchestra, we provide a state-of-the-art

“orchestration” facility for Java programs. Taking into account the unique capabilities



of network nodes (instruments) we partition Java applications for harmonious distrib-
uted execution. We believe that automatic application partitioning represents a huge
promise and that J-Orchestra is a general and powerful automatic partitioning tool.
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