
jUCM: Universal Class Morphing (position paper)

Aggelos Biboudis
University of Athens
biboudis@di.uoa.gr

George Fourtounis
University of Athens
gfour@di.uoa.gr

Yannis Smaragdakis
University of Athens
yannis@smaragd.org

Abstract
We extend prior work on class-morphing to provide a more
expressive pattern-based compile-time reflection language.
Our MorphJ language offers a disciplined form of metapro-
gramming that produces types by statically iterating over and
pattern-matching on fields and methods of other types. We
expand such capabilities with “universal morphing”, which
also allows pattern-matching over types (e.g., all classes
nested in another, all supertypes of a class) while maintain-
ing modular type safety for our meta-programs. We present
informal examples of the functionality and discuss a design
for adding universal morphing to Java.

1. Introduction
The ultimate flexible software component is one that safely
adapts its behavior and its interface depending on its uses.
When a component’s interface is statically defined (as in
the case of classes in a statically typed language), such
adaptation requires a meta-programming facility. Meta-
programming is typically low-level and unwieldy, with few
guarantees of safety. Mechanisms for compile-time reflec-
tion [2, 5] have been proposed to address such safety needs.

In our previous work [3–5] we presented and extended
MorphJ. MorphJ is a language that adds compile-time re-
flection capabilities to Java. A programmer is able to capture
compile-time patterns and encode them in (meta-)classes.
Each pattern is associated with a generative scenario. For in-
stance, a morphed class Listify may statically iterate over
all the methods of another, unknown, type, Subj, pick those
that have a single argument, and offer isomorphic methods:
whenever Subj has a method with argument A, Listify ac-
cepts a List<A> . (The implementation of every method in
Listify can then, e.g., iterate over all list elements, and ma-
nipulate them using Subjs methods.)

class Listify<Subj> {

Subj ref;

Listify(Subj s) {ref = s;}

<R,A>[m] for (public R m(A): Subj.methods)

public R m (List<A> a) {

... /* e.g., call m for all elements */

}

}

MorphJ offers program transformation capabilities but
with modular type-safety guarantees: type-checking (via
MorphJ) the code of Listify guarantees that all the classes
it may produce (for any type Subj) also type-check (via the
plain Java type system).

In this work we complement MorphJ with the ability
to statically reflect over classes, instead of just fields and
methods. We discuss our early motivation with examples
over nested classes.

2. Application: (Static) Nested Classes
Classes are the typical unit of modularity in an object-
oriented language. To form larger modules, one can group
classes together into components such as packages, or as-
semblies. At the language level, the class mechanism itself
can serve as a component, encapsulating other classes. This
is elegant from a modeling standpoint (a single concept for
all levels of modularity) and even captures existing language
features that allow the nesting of classes.

Nested classes can be either inner classes or static nested
classes in Java. Folklore in the Java community suggests to
favor static nested classes over inner classes and use the lat-
ter only if it is absolutely needed (Item 22 in [1]). Program-
mers use static nested classes in various practical scenarios.
In compiler engineering, static nested classes are usually
used when representing abstract syntax tree (AST) nodes.
javac in fact, contains static nested classes for AST nodes
that also extend the top-level class, JCTree.1 Tools such as
ANTLR that generate parsers also generate code of this
form. In UI engineering, several tools generate class defi-
nitions that contain static nested classes—e.g., the Android
Asset Packaging Tool that generates the R class, a strongly-
typed view of resource IDs for all the resources in the re-
sources directory.2

Our universal morphing techniques find interesting appli-
cations in (static) nested classes.

Ex1. Replace inheritance with delegation for all classes in
a library. In this example we want to replace inheritance

1 http://hg.openjdk.java.net/jdk8/jdk8/langtools/file/

jdk8-b132/src/share/classes/com/sun/tools/javac/tree/

JCTree.java
2 http://developer.android.com/guide/topics/resources/

accessing-resources.html

http://hg.openjdk.java.net/jdk8/jdk8/langtools/file/jdk8-b132/src/share/classes/com/sun/tools/javac/tree/JCTree.java
http://hg.openjdk.java.net/jdk8/jdk8/langtools/file/jdk8-b132/src/share/classes/com/sun/tools/javac/tree/JCTree.java
http://hg.openjdk.java.net/jdk8/jdk8/langtools/file/jdk8-b132/src/share/classes/com/sun/tools/javac/tree/JCTree.java
http://developer.android.com/guide/topics/resources/accessing-resources.html
http://developer.android.com/guide/topics/resources/accessing-resources.html


with delegation automatically for all static nested classes of
Library. This feature is offered as a refactoring mechanism
in IDEs today but the user may need to generate a delegation-
view via an existing hierarchy for all classes. Such existing
hierarchy is enclosed in the class Library below:

class Library {

static class Vector {

boolean isEmpty() {}

}

static class Stack extends Vector { }

}

The programmer’s intention is to have a view of the
library that relies on delegation like the one below:

class Library {

static class Vector {

boolean isEmpty() {}

}

static class Stack {

Vector subobject;

boolean isEmpty() { subobject.isEmpty(); }

}

}

We introduce the static for keyword for static reflection
over classes. In line 2 of the LibraryDelegated we use it
to iterate over all classes in the type Library. The pattern
that we look for is that of classes that extend some other
class. All classes inside L that are going to be captured
will have a corresponding definition in Delegate<L>. Inside
each class definition we define a subobject field of type S

(the supertype). In lines 5-6 we rely on the static-for we
introduced in MorphJ.

class Delegate<L> {

<C,S> for (C extends S : L.classes)

static class C {

S subobject#S;

<R, A*> [m] for(public R m(A) : S.methods)

R m(A a){ return subobject#S.m(a); }

}

}

Ex2. Introduce interface and add a new method. In the
following we introduce an interface that is implemented by
all static nested classes. Again this is realized by reflecting
over all classes of the type that is going to parameterize the
AlertingGraph type.

interface Alert { void alert(); }

class AlertingGraph <class X> {

[N] for (N : X.classes)

static class N extends X.N implements Alert {

[m] for(public void m () : N.methods)

public void m() {

alert();

m();

}

void alert() { System.out.println("Alerted!"); }

}

}

Ex3. Merge two classes into one (including nested classes).
We can create a highly generic class that consists of the
union of members (methods and classes) of two others, with
one of them taking precedence.

class Union<class B, class C> {

<R, A*> [m] for (R m(A) : B.methods)

R m(A a) { super.m(a); }

<R, A*> [m] for (R m(A) : C.methods;

no R m(A): B.methods)

R m(A a) { super.m(a); }

[N] for (N : B.classes)

class N {

<R,A> [m] for (R m(A) : N.methods)

R m(A a) { b.m(a); }

<NB> for (NB : N.classes)

class NB extends N.NB { }

}

[N] for (N : C.classes; not N : B.classes)

class N {

<R,A*>[m] for (R m(A) : N.methods)

R m(A a) { b.m(a); }

<NC> for (NC : N.classes)

class NC extends N.NC { }

}

}

There is a wealth of other examples of universal morph-
ing. For instance, we can iterate over all interfaces imple-
mented by a class, we can offer highly-generic mixin layers
[6], we can scrap the traversal boilerplate in external visitor
patterns.

3. Conclusion
We are working on jUCM, an extension of MorphJ that en-
ables more compile-time reflection patterns. A major chal-
lenge includes designing the type system extension that will
ensure modular type-safety of meta-programs.

Acknowledgments. We gratefully acknowledge funding by
the Greek Secretariat for Research and Technology under the
“MorphPL” Excellence (Aristeia) award.

References
[1] J. Bloch. Effective Java. Addison-Wesley, Upper Saddle River, NJ, 2nd

edition, May 2008. ISBN 9780321356680.
[2] M. Fähndrich, M. Carbin, and J. R. Larus. Reflective program genera-

tion with patterns. In GPCE ’06: Proc. of Generative Programming and
Component Engineering, pages 275–284, New York, NY, 2006. ACM
Press. ISBN 1-59593-237-2.

[3] P. Gerakios, A. Biboudis, and Y. Smaragdakis. Forsaking Inheritance:
Supercharged Delegation in DelphJ. In Object Oriented Programming
Systems Languages & Applications (OOPSLA), pages 233–252, New
York, NY, USA, 2013. ACM.

[4] S. S. Huang and Y. Smaragdakis. Expressive and safe static reflection
with MorphJ. In Proc. Conf. on Programming Language Design and
Implementation (PLDI), volume 43, pages 79–89, Tucson, AZ, USA,
2008.

[5] S. S. Huang and Y. Smaragdakis. Morphing: Structurally Shaping a
Class by Reflecting on Others. ACM Transactions on Programming
Languages and Systems, 33(2):1–44, Feb. 2011. ISSN 0164-0925.

[6] Y. Smaragdakis and D. Batory. Implementing layered designs with
mixin layers. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 550–570. Springer-Verlag
LNCS 1445, 1998.


	Introduction
	Application: (Static) Nested Classes
	Conclusion

