
General and Efficient Locking without Blocking

Yannis Smaragdakis Anthony Kay Reimer Behrends Michal Young
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403-1202

{yannis,tkay,behrends,michal}@cs.uoregon.edu

ABSTRACT
Standard concurrency control mechanisms offer a trade-off:
Transactional memory approaches maximize concurrency,
but suffer high overheads and cost for retrying in the case of
actual contention. Locking offers lower overheads, but typi-
cally reduces concurrency due to the difficulty of associating
locks with the exact data that need to be accessed. More-
over, locking allows irreversible operations, is ubiquitous in
legacy software, and seems unlikely to ever be completely
supplanted.

We believe that the trade-off between transactions and
(blocking) locks has not been sufficiently exploited to ob-
tain a “best of both worlds” mechanism, although the main
components have been identified. Mechanisms for convert-
ing locks to atomic sections (which can abort and retry)
have already been proposed in the literature: Rajwar and
Goodman’s “lock elision” (at the hardware level) and Welc
et al.’s hybrid monitors (at the software level) are the best
known representatives. Nevertheless, these approaches ad-
mit improvements on both the generality and the perfor-
mance front. In this position paper we present two ideas.
First, we discuss an adaptive criterion for switching from
a locking to a transactional implementation, and back to a
locking implementation if the transactional one appears to
be introducing overhead for no gain in concurrency. Second,
we discuss the issues arising when locks are nested. Contrary
to assertions in past work, transforming locks into transac-
tions can be incorrect in the presence of nesting. We explain
the problem and provide a precise condition for safety.

Categories and Subject Descriptors
C.5.0 [Computer Systems Implementation]: General;
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.3 [Programming Lan-

guages]: Language Constructs and Features—concurrent
programming structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSPC’08 2 March 2008, Seattle, WA, USA
Copyright 2008 ACM 978-1-60558-049-4 ...$5.00.

General Terms
Design,Languages

Keywords
transactional memory, nested transactions, hybrid locks,
adaptive locks

1. INTRODUCTION
Concurrent programming has recently become one of the

hottest topics in computing. The improvements to single
core speed have given way to inexpensive chip multiproces-
sors, moving the burden of increased software performance
from the hardware engineer to the software developer.

Much of the current and future software will continue to
be written with existing lock mechanisms until a mainstream
alternative is found and accepted. Some specialized mech-
anisms, such as OpenMP, are already becoming more pop-
ular, though they typically solve only a narrow band of al-
gorithmic problems and require a programmer to manually
add annotations to indicate the method of parallelization.

Transactional memories were invented in the early 90’s
and have often been proposed as a software runtime mecha-
nism that can replace lock-based synchronization. A trans-
actional memory system replaces lock-acquire and lock-
release primitives with a single atomic section construct
that designates portions of code that should execute as-if-
uninterrupted. Therefore, a transactional memory system
relieves the programmer from the obligation of associating
data with specific locks and coordinating the lock acquisition
and release among different locks. Additionally, the trans-
actional memory system ensures maximum concurrency of a
critical section: Different threads can make progress as long
as the data they access do not truly conflict. In contrast,
locks can often introduce false conflicts, as different threads
contend for the same lock, only to end up accessing disjoint
data.

However, simply getting rid of locks may not always be
ideal. The overheads associated with software transactional
memory (STM) implementations are quite high, especially
when the execution of critical sections is a significant portion
of the overall program runtime. The overheads mostly have
to do with read- or write-trapping, rather than with the cost
of atomic operations [4].

We, thus, note a performance trade-off between transac-
tional memory and locks. Assuming a correct lock-based im-
plementation and a transactional memory implementation,
the latter is clearly preferable when the following criteria are

1

met:

1. Contention on the protected data is rare.

2. Contention on the lock protecting the data is common.

3. The overhead of performing memory operations trans-
actionally is low. (I.e., it is outweighed by the benefit
of extra concurrency.)

In contrast, locks are clearly preferable under complemen-
tary conditions:

1. Contention on the lock reflects actual contention on
the protected data.

2. The overhead of performing memory operations trans-
actionally is high. (I.e., it outweighs the benefit of po-
tential concurrency.) This is often the case for longer
critical sections.

Furthermore, there are also generality considerations in
the trade-off. Standard transactional models cannot deal
with irreversible operations—a large part of our past work
has been in proposing alternative transactional models to
deal with thread communication and I/O [10].

In this position paper, we propose to exploit the trade-
off by implementing an adaptive mechanism that dynam-
ically transforms correctly implemented lock-based critical
sections into transactions and back into regular locks, as re-
quired for best performance or correctness. The observation
that this is possible is not new. Rajwar and Goodman [8]
originally proposed transforming locks to transactions for
performance gains at the hardware level, in a mechanism
known as lock elision[7]. Welc, Hosking, and Jagannathan
[11] proposed implementing Java monitors transactionally
in software. This approach is very close to what we aim to
achieve. Nevertheless, we believe that it misses some ele-
ments:

• Our emphasis is on the adaptive switching mecha-
nism. We argue that the criterion of Welc et al. for
implementing a monitor using transactions is over-
optimistic. Furthermore, in the Welc et al. work there
is no consideration for reverting back to locks if the
transactional memory mechanism turns out to be in-
efficient. We believe that this is part of the reason for
the not-quite-impressive performance results they ob-
tained. In Welc et al.’s work there does not seem to
be a notion of trade-off between concurrency and STM
overhead. Furthermore, any lock contention is treated
as an indication that a critical section should be exe-
cuted transactionally. In contrast, the appropriate in-
dication is that contention on the lock is much greater
than contention on the actual data, as suggested ear-
lier. Welc et al. acknowledge that adaptive solutions
may provide improvements over their technique, and
our paper pinpoints the appropriate criteria for adap-
tivity.

• The generality issues of implementing lock-based crit-
ical sections as transactions have not been explored
in detail. Specifically, the transformation is not cor-
rect in the case of nested critical sections. Welc et
al. state that the prevalent use of monitors is to en-
force atomicity, but do not address the question of how

to automatically detect monitor uses that do not en-
force strict atomicity for their nested critical sections.
We discuss the issue with examples and offer a general
correctness condition: Nested critical sections can be
implemented transactionally if all their nested critical
sections are also implemented transactionally and any
other critical section acquiring a conflicting lock also
acquires the same outer locks.

Our ideas are examined in the context of a pure soft-
ware implementation. An important trend in transactional
memory systems is to provide hardware support for enhanc-
ing performance. With hardware support the performance
trade-offs change significantly. Nevertheless, we believe that
many of our observations hold even in a future with ubiqui-
tous hardware support for transactions. First, our general-
ity discussion for nested critical sections applies directly to
hardware: Past hardware techniques, such as Rajwar’s lock
elision, did not examine the case of nested locks. Second,
even with hardware support, the overwhelming expectation
is that transactional memory will be a hybrid software-
hardware approach [5, 6], and that locking will still be ben-
eficial in the future for several cases. (E.g., although the
cost of transactional memory will shrink significantly, spec-
ulative approaches for locks promise to yield similar gains
for low-level atomic operations [7]. Therefore, locks can be
cheaper, especially for long-running transactions that will be
partially implemented in software. Furthermore, in cases of
high contention, locking will yield better performance even
if memory operations in transactional execution incur zero
overhead.)

2. ADAPTING BETWEEN LOCKS AND
TRANSACTIONS

The main idea of executing a lock-based critical section
transactionally is simple enough. (Indeed, we “invented” it
in 2003, circulated it by email, and subsequently discovered
that the idea was known.) Lock-acquire and lock-release
statements are viewed as program delimiters for critical sec-
tions, which can be executed atomically as transactions. For
example, if our program has a lock l1 that is used in only
two locations,

lock(l1); // atomic {

...

unlock(l1); // }

...

lock(l1); // atomic {

...

unlock(l1); // }

then if both of those sections of code are simultaneously con-
verted to transactions (as the comments suggest), they will
continue to behave correctly with respect to memory. The
decision to implement a critical section transactionally or
using a blocking lock is made at the level of individual locks
(e.g., l1 above). All critical sections acquiring the same
lock should have the same implementation. For specifics of
a switching approach, the reader should consult the descrip-
tion of Welc et al. [11].

The correctness of the above transformation is not always
self-evident because mutual exclusion is not the same as
transactional execution: Shared memory effects inside the

2

critical section are exported to other threads when a lock
is held, unlike in the case of an atomic transaction. Never-
theless, a common correctness condition for multithreaded
applications is that shared memory locations be consistently
accessed while holding the same lock. In this case, even
though the results may be exported to other threads, they
cannot be accessed while the lock has not yet been released,
thus guaranteeing the equivalence of mutual exclusion and
atomic transactions. For the rest of this section we will not
worry about the correctness and generality issues of execut-
ing locks transactionally. These will become again a factor
in our subsequent discussion on nesting.

The main benefit of executing a lock as a transaction is
that a lock may be far too strict.1 A single lock is com-
monly used to protect a large amount of shared data—an
approach known as coarse grained locking. In this way, mul-
tiple threads are blocked from accessing the data, even in
cases when they would not really conflict. The main reason
that programmers use coarse grained locking is that it is of-
ten far easier than trying to correctly associate locks with
smaller amounts of data. Several domains and data struc-
tures (e.g., red-black trees) are notoriously difficult to code
with a fine-grained locking discipline.

Therefore, the performance benefit of transactions is ex-
clusively due to higher concurrency: More threads can ex-
ecute the same critical section with transactions than with
locks. Assuming that separate processors exist to run these
threads independently, a net performance increase (speedup
equal to the level of concurrency) results.

Nevertheless, software transactional memory techniques
have high overheads for each memory access. State-of-the-
art mechanisms, such as TL2 [4], attempt to optimize the
common case of memory reads but still suffer relatively high
overheads for memory writes. The overall effect is that exe-
cuting a code fragment transactionally is a number of times,
k, slower than executing it outside a transaction. For cur-
rent STMs, k can often be around 10, although the real value
depends on factors such as the mixture of reads and writes
in the transactional workload.

The above observations, albeit straightforward, lead to in-
teresting (and, to our knowledge, novel) conclusions about
when and how to adapt between a transactional and a lock-
ing implementation of a critical section.

• A critical section will execute faster with a transac-
tion than with a blocking lock only if the maximum
amount of contention, c, on the lock would be higher
than the overhead factor k of the STM. For instance, if
the STM imposes a 10x overhead and the lock is typi-
cally contended by 5 threads, the transactional imple-
mentation is guaranteed to be at least twice as slow
as the lock-based one. This is an important observa-
tion. For instance, Welc et al. [11] convert a critical
section to a transactional implementation as soon as
any contention (even 2 threads) is observed! This is
clearly the wrong criterion for adaptation, especially
given that the Welc et al. implementation has higher
overheads than modern STMs.

1Another reason for executing a lock as a transaction is when
the program has deadlocking bugs but we wish to run it
regardless. We believe that this is a very promising idea,
but we are not exploring it in this paper—we assume correct
locking code as input.

• More generally, the contention of the lock is not the
only one that needs to be taken into account. The
contention of the transaction is also a factor! For in-
stance, if the lock-based implementation is contended
by an average of 15 threads, but the transaction-based
implementation retries an average of 3 times, then the
concurrency benefit that the transaction implementa-
tion obtains is roughly a factor of 5. Our generalized
criterion, thus, becomes: A critical section should be
expected to execute faster with a transaction than with
a blocking lock if the average number a transaction re-
tries, r, multiplied by the transaction overhead factor,
k, is less than the average lock contention, c.

Our goal is to use these observations as the basis for the
cost-benefit analysis of an adaptive mechanism. Specifi-
cally, we want to initially convert a critical section from
lock-based to transaction-based whenever we notice (upon
a lock-release) that the number of blocked threads (i.e., our
estimate for c) is higher than our estimate for k. Similarly,
we want to revert from a transactional implementation back
to a lock-based one if we see that each transaction retries
on average r times and r · k ≥ c. Making these adaptiv-
ity decisions only requires maintaining two quantities: the
number of threads blocked on a lock (which is trivial to ob-
tain) and the number of times a transaction retries (which is
straightforward to maintain). The quantity k for the average
transaction overhead can be estimated fairly well statically
or with off-line profiling, or even computed dynamically by
measuring the average length of the critical section under a
transactional and under a lock-based implementation.

Of course, the above discussion conveys only the main
idea. The cost model can become more detailed, overheads
can be reduced with sampling, and the best policy may need
to be proactive (e.g., predict future contention based on the
current number of blocked threads and the rate of increase
since the last lock-release). But such tweaks should not ob-
scure the main elements of the cost model, which are the
contention of the lock-based implementation, and the con-
tention and overhead of the transactional implementation.

3. GENERALITY UNDER NESTING
The second idea advocated in this paper concerns the gen-

erality of replacing locks with transactions in the presence
of nested critical sections. Welc et al. assert that “[t]here is
no conceptual difficulty in dealing with nesting” [11] but this
is true only under strict assumptions on the usage of locks.
Obtaining correctness under weaker assumptions is highly
desirable, and we do find that there is conceptual difficulty
in dealing with nesting.

We briefly mentioned in the previous section that trans-
lating locks into transactions does not always result in an
equivalent program: A transaction isolates its effects, so that
they cannot be observed by other transactions. In contrast,
shared memory effects inside a lock-based critical section are
exported to other threads. This has been the basis of the
examples of Blundell et al. [2] who discuss in detail the se-
mantic differences of the two constructs. The interesting is-
sue, however, is not whether the constructs are different, but
under what conditions they are equivalent. It is tempting
to speculate the following correctness condition: For each
shared memory location there should be a lock, such that
every access to the shared memory location occurs with the

3

lock held. Indeed, this is a standard well-formedness crite-
rion for multi-threaded programs and even enforced by some
of the best known race detectors (e.g., Eraser [9]). In the
case of non-nested locks, this condition ensures that lock-
based and transactional executions are equivalent: Even
though the results may be exported to other threads, they
cannot be accessed while the lock has not yet been released.
Nesting, however, makes this condition insufficient and re-
quires its strengthening. We next demonstrate this and for-
mulate a stronger (sufficient but not necessary) condition for
the equivalence of lock-based and transactional execution.

Nesting causes problems when programmers expect that
the effects of a shared memory operation become accessible
to other threads at the point of a lock-release. Indeed, most
concurrent memory models guarantee that a lock-release op-
eration acts as a memory barrier, resulting in the flushing
of write buffers. When transactions are nested, however,
their results do not become visible until the outer transac-
tion commits—this is the standard closed-nested semantics
of transactions. In this case, implementing the outer criti-
cal section as a transaction is incorrect: the behavior still
respects safety, but may not respect progress.

To see the problem, consider the following example. Func-
tion barrier implements a simple barrier by spinning until
all threads reach the same point.2

void barrier() {

lock(l1);

n++;

unlock(l1);

lock(l1);

while (n < allThreads) {

unlock(l1);

sleep();

lock(l1);

}

unlock(l1);

}

The problem begins when the barrier routine happens to
be used inside a different critical section, possibly protecting
completely distinct data.

lock(l2);

...

barrier();

...

unlock(l2);

The intention of using lock l2 is certainly not to make the
critical sections inside barrier execute in an all-or-nothing
way. Indeed, if the critical sections do execute atomically,

2One may question the validity of using a spin-lock as an
example, since a better practice might be to employ a con-
dition variable and wait on it. Nevertheless, the essence of
the example has nothing to do with busy-waiting. Further-
more, we would like to guarantee correctness for as wide
assumptions as possible, including for low-level mechanisms
that may indeed spin.

the result will be equivalent to having:

atomic {

...

n++;

while (n < allThreads)

sleep();

...

}

In this case, no thread will ever exit the barrier, since its
effects are prevented from being seen by other threads.

The essence of the problem, however, is that the barrier

routine is called while sometimes holding lock l2 and some-
times not. If all threads consistently called barrier while
holding l2, then the result would suffer from the same lack-
of-progress error, but the error would also exist in the lock-
based implementation. Only when a thread is allowed to call
barrier without holding l2 is the lock-based implementa-
tion correct, while the transaction-based one is incorrect.

Thus, the general observations for dealing with nesting
when allowing critical sections to be implemented by trans-
actions are:

• When a critical section is implemented as a transac-
tion, all nested critical sections have to be implemented
as transactions as well. If a nested critical section can-
not be implemented transactionally (e.g., because it
contains an irreversible operation, or because the sys-
tem determines it is more efficiently executed using a
lock) the transaction of the outer critical section needs
to be aborted and the critical section re-executed using
a lock.

• For a given lock l, lock-based execution is equivalent to
transaction-based execution (which has atomicity and
isolation properties, and not just mutual exclusion) if,
in the lock-based program, at every point l is acquired,
the set of already-held locks is the same. Violations of
this property can be detected dynamically by a system
implementing critical sections as either transactions or
locks. For each critical section currently executing as
a transaction, the system needs to keep track of which
locks the surrounding transactions correspond to, i.e.,
which locks the current thread “holds” (in a virtual
sense). If a different thread tries to access the crit-
ical section while not “holding” the same locks, then
the original critical section needs to be aborted and
restarted with a lock-based implementation.

4. CONCLUSIONS
We discussed ideas for allowing traditional lock-acquire

and lock-release critical sections to switch to a software
transaction implementation for higher efficiency. The me-
chanics of this switch were well-studied in past work, so
we concentrate on two important points. The first is an
adaptive cost-benefit analysis for dynamically deciding when
to switch the implementation from a lock-based one to a
transaction-based one and vice versa. The second is an
approach to guaranteeing correctness even in the presence
of nested critical sections. Although practical lock nesting
depths are often low [3, 1], a nesting depth of 2 is not that
rare and certainly cannot be statically excluded or assumed
away.

Both ideas are work-in-progress.

4

5. REFERENCES
[1] David F. Bacon, Ravi Konuru, Chet Murthy, and

Mauricio Serrano. Thin locks: featherweight
synchronization for java. In PLDI ’98: Proceedings of
the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 258–268,
New York, NY, USA, 1998. ACM.

[2] Colin Blundell, E. Christopher Lewis, and Milo M.
Martin. Subtleties of transactional memory atomicity
semantics. IEEE Comput. Archit. Lett., 5(2):17, 2006.

[3] Bjorn B. Brandenburg and James H. Anderson.
Feather-trace: A light-weight event tracing toolkit.
Proceedings of the Third International Workshop on
Operating Systems Platforms for Embedded Real-Time
Applications, pages 20–27, 2007.

[4] David Dice, Ori Shalev, and Nir Shavit. Transactional
locking II. In Shlomi Dolev, editor, Distributed
Computing, 20th International Symposium (DISC),
volume 4167 of Lecture Notes in Computer Science.
Springer, 2006.

[5] Sanjeev Kumar, Michael Chu, Christopher J. Hughes,
Partha Kundu, and Anthony Nguyen. Hybrid
transactional memory. In PPoPP ’06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 209–220,
New York, NY, USA, 2006. ACM.

[6] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen McDonald, Nathan Bronson, Jared Casper,
Christos Kozyrakis, and Kunle Olukotun. An effective
hybrid transactional memory system with strong
isolation guarantees. In ISCA ’07: Proceedings of the
34th Annual International Symposium on Computer
architecture, pages 69–80, New York, NY, USA, 2007.
ACM Press.

[7] Ravi Rajwar and James Goodman. Speculative lock
elision: Enabling highly concurrent multithreaded
execution. 34th International Symposium on
Microarchitecture, December, 00:294, 2001.

[8] Ravi Rajwar and James R. Goodman. Transactional
lock-free execution of lock-based programs. SIGARCH
Comput. Archit. News, 30(5):5–17, 2002.

[9] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: a dynamic
data race detector for multi-threaded programs. In
SOSP ’97: Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages
27–37, New York, NY, USA, 1997. ACM.

[10] Yannis Smaragdakis, Anthony Kay, Reimer Behrends,
and Michal Young. Transactions with isolation and
cooperation. In ACM Symposium on Object Oriented
Programming: Systems, Languages, and Applications
(OOPSLA). ACM Press, October 2007.

[11] Adam Welc, Antony L. Hosking, and Suresh
Jagannathan. Transparently reconciling transactions
with locking for java synchronization. In European
Conference on Object-Oriented Programming, pages
148–173, Jul 2006.

5

