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Abstract We explore the automatic generation of test data that respect constraints

expressed in the Object-Role Modeling (ORM) language. ORM is a popular conceptual

modeling language, primarily targeting database applications, with significant uses in

practice. The general problem of even checking whether an ORM diagram is satisfiable

is quite hard: restricted forms are easily NP-hard and the problem is undecidable for

some expressive formulations of ORM. Brute-force mapping to input for constraint and

SAT solvers does not scale: state-of-the-art solvers fail to find data to satisfy unique-

ness and mandatory constraints in realistic time even for small examples. We instead

define a restricted subset of ORM that allows efficient reasoning yet contains most

constraints overwhelmingly used in practice. We show that the problem of deciding

whether these constraints are consistent (i.e., whether we can generate appropriate

test data) is solvable in polynomial time, and we produce a highly efficient (interactive

speed) checker. Additionally, we analyze over 160 ORM diagrams that capture data

models from industrial practice and demonstrate that our subset of ORM is expressive

enough to handle their vast majority.

Keywords ORM · modeling · testing · databases · NP-hardness · ORM-

1 Introduction

Modeling languages offer a concise way to capture design decisions and express spec-

ifications at a level of abstraction higher than concrete code. The higher level of ab-
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straction often lends itself to automated reasoning. Nevertheless, a competing trend is

that of adding more and more functionality to modeling languages, in order to bridge

the gap between design and implementation. Several modern modeling languages (e.g.,

UML) have distinct sub-languages, some of which are highly abstract, while others are

much closer to the implementation. Automatic reasoning is easy in the former case but

becomes quite hard in the latter.

In this article, we analyze a modeling notation and, in particular, its tradeoffs

between expressiveness and automatic reasoning ability. Our modeling language is

Object-Role Modeling (ORM ) [11,24]: a modern, popular, and powerful data modeling

language. ORM is a general language for conceptual modeling, although its primary

application is in the database domain. For concreteness, we use database terminology

in this article. The problem we want to solve is the automatic generation of test data

that respect semantic constraints expressed in the model.

Producing valid test data is a problem with several applications in practice. De-

velopers often want sample data both to verify that their specification corresponds

to their understanding of the data, and to test programs as they are being developed.

Generating unconstrained data is unlikely to be appropriate, however. Useful data typ-

ically needs to respect many semantic constraints: e.g., on a given table a certain field’s

values may be unique (i.e., the field is a key); one table’s contents may be a subset

of the contents of another; data values of a field may need to be in a specific range;

etc. Such constraints are often concisely captured in data modeling languages. Thus, it

is convenient and intuitively appealing to use a high-level model, expressed in a data

modeling language, as a blueprint for creating large volumes of concrete well-formed

data automatically.

Nevertheless, the problem of satisfying well-formedness constraints mechanically

is often quite hard. In our case, producing sample data from ORM models (called

diagrams in ORM parlance) is at best an intractable problem: even a simplified version

of basic ORM constraints, with each table (predicate in ORM terminology) holding up

to a single entry, makes the problem NP-hard. Checking realistic ORM constraints is

typically even harder: constraints that describe relationships among different entries

of a predicate typically result in a double-exponential runtime complexity. Even with

small amounts of data to generate, a naive translation of the constraints into logic needs

to model not just the predicate interconnections but also the contents of predicates.

The result typically far exceeds the capabilities of modern constraint solving tools. In

an experiment with state-of-the-art solvers we could not get a satisfying assignment

for as few as 3 entities with 20 elements each.

Practical uses of ORM modeling, however, often only concentrate on a modest

subset of the language. The main constraints on predicates encountered in practice are

special forms of internal uniqueness constraints (“this field or set of fields is a primary

key”), mandatory constraints (“every value of this entity needs to participate in this

predicate”) and subtype constraints on objects. Thus, we define an interesting subset

of ORM, ORM− (pronounced “ORM-minus”), with such commonly used yet simple

constraints. We define ORM− precisely and present an algorithm that a) detects errors

that make a diagram unsatisfiable in polynomial time (relative to the diagram size);

and b) produces large quantities of data in time proportional to the size of the data

produced. (Full ORM inputs can be used with our algorithm but constraints outside

the ORM− subset are ignored.)

In overview, the novel elements of our work are as follows:
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• We define ORM−: a subset of the ORM modeling notation with desirable properties

for automated reasoning. The satisfiability (i.e., consistency) of diagrams in ORM−

can be checked efficiently—both in theoretical terms (polynomial time) and in prac-

tice (sub-second run-time). Furthermore, test data can be generated efficiently for

satisfiable ORM− diagrams. ORM− represents a sweet spot in the tradeoff between

automation and expressibility: we show two small variations that make the problem

intractable when added to the existing set of allowed constraints. Although there are

similar results for other notations, we are not aware of any such result for ORM or

modeling languages straightforwardly reducible to/from ORM.

• Our ORM subset is of practical interest: the vocabulary allowed was selected after

consultation with database engineers who use the ORM notation. Our constraints

are precisely those used heavily in practice, perhaps suggesting that database engi-

neers avoid too-expressive constraints. We validate the applicability of ORM− with

an extensive study of ORM diagrams in real industrial use. We examine over 160

diagrams that contain some 1800 constraints in total. Of those constraints, only 24

are not expressible in ORM−. The vast majority of diagrams are completely free of

constraints outside the ORM− subset.

2 Background: ORM

Object Role Modeling (ORM) is a data modeling language that attempts to model

a system in terms of its objects and the roles that they play. ORM has a graphical

notation and tries to capture common properties that are well-understood by database

programmers. We next present briefly the most common elements of ORM. Some ad-

vanced elements are elided, in the interest of space, since they do not qualitatively

affect our subsequent discussion.

For the rest of this article, we follow the convention of calling a model specified in

ORM a “diagram”. When we talk of a “model” (as a noun) of the diagram, we mean a

set of data that satisfy the diagram’s constraints—analogously to the use of the term

“model” in logic.

Entity

(e)
Value

relation

Fig. 1 Basic notation

The basic components of the system being modeled are referred to as objects.

Objects can be either values (i.e., well understood objects, such as a number or a

string) or entities (derivative objects that are mapped to values). Object types are

related to each other through predicates. Any number of object types can be related

to each other, thus there can be predicates of any arity. If an object type e is related

to another object type f through a predicate p, we say object types e and f play roles

in the predicate p. The term role is used to refer to the relationship between an object

type and a predicate, since an object type can be used in multiple predicates. In the

relational world, a predicate can be thought of as a relation or table. The notation for

value and entity types is shown in Figure 1. Value types are designated by a dotted-line

ellipsis, while entity types are designated by a solid-line ellipsis. Typically each entity
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is identified by a single value type (e.g., a name string), which is listed in parentheses

under the entity name. In general, the difference between value types and entity types

has little consequence in our examples, and we will occasionally use the term “entity”

to mean “entity or value”.

Person

(name)

submits Paper

(title)

reviews

Fig. 2 Simple ORM diagram

Consider the example in Figure 2. We are trying to model a simple system to store

information about conference submissions. Two entity types, “Person” and “Paper”

represent our objects. There are two predicates reviews and submits. Each of the entities

play a role in both these predicates. A database that corresponds to this diagram

will consist of two tables (assuming what is called the “standard mapping” of ORM

diagrams to an implementation [12]): one with a list of people and the papers they

submitted and another with a list of reviewers and papers they review.

There are no constraints specified on the ORM diagram in Figure 2. The modeler

may want to specify a restriction that a person cannot both submit and review papers.

Another restriction might be that a person can submit at most two papers. Or the

modeler may require that a paper not have more than a set number of authors. Next,

we list the main types of constraints that can be specified in an ORM diagram with

examples. For a more detailed treatment of ORM, the reader is referred to Halpin’s

book [11].

Uniqueness constraints.

This constraint specifies that the occurrence of a value in any column of a predicate

is unique. In database terminology, a uniqueness constraint on a predicate identifies the

keys of the corresponding table. Uniqueness can be represented in the ORM diagram by

a double arrow over the roles that are unique in a predicate. For example, consider the

diagram in Figure 3. The line over the role played by Paper in the predicate accepted

indicates that a particular paper can occur in that table at most once—i.e., a paper

can be accepted to at most one conference.

Person

(name)

Conference

(cname)

Paper

(title)

acceptedsubmits
U

Fig. 3 Uniqueness and mandatory constraints
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Uniqueness can span multiple roles, implying that each tuple with values from the

roles is unique. Furthermore, the roles can belong to different predicates—a constraint

called external uniqueness. In this case, the tuple spanning multiple roles is considered

on the (implicit) predicate resulting from joining the actual predicates on their common

values. For instance, in Figure 3, the roles for Person in predicate submits and for

Conference in predicate accepted are connected by an external uniqueness constraint,

signified by the circled “U” in the diagram. This specifies that no person can have more

than one paper in the same conference.

In our formulation of ORM, we enforce the common implicit uniqueness constraint

spanning all roles of a predicate. That is, a predicate cannot contain two tuples that

are the same across all roles.

Mandatory constraints and independence.

In Figure 3, the black dot connecting the entity Paper to the role it plays in the

submits predicate denotes a mandatory constraint. This indicates that all papers in our

universe are submitted.

A more complex form of the mandatory constraint is the disjunctive mandatory

constraint. This links roles of the same entity in multiple predicates and signifies that

all objects in the entity have to be a part of some (possibly all) of those predicates.

This constraint is represented by connecting each of the roles that are mandatory to

a black dot. We will not encounter an example of such a constraint in our discussion,

except in its implicit form. In an ORM diagram, every object of an entity is implicitly

assumed to participate in some of the predicates in which the entity has a role. This

means that every entity in the system has an implicit disjunctive mandatory constraint

over all its roles. (If an entity plays only one role, then this is equivalent to a regular

mandatory constraint on that role. For instance, a black dot would be redundant on

the links from entities Person or Conference in Figure 3.)

An exception to this rule is independent entity types, designated with an exclama-

tion mark after their name. Objects of an independent type can exist without partici-

pating in predicates.

Frequency constraints.

Frequency constraints generalize uniqueness constraints, by allowing each tuple to

occur a number of times, instead of just once. In Figure 4, the frequency constraint

of (3-5) on the roles played by Conference and Paper states that each combination

of conference and paper that appears in the predicate has to appear three to five

times—i.e., each paper needs three to five reviewers for the same conference.

Conference

(cname)

Paper

(title)

Person

(name)

reviewed_by

3 - 5

Fig. 4 Frequency constraints
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Subset, Equality constraints.

A subset constraint can be applied over two ranges of roles in two predicates. The

constraint specifies that the tuples in the roles of the first predicate have to be among

the tuples in the roles of the second. An important restriction here is that the types of

the roles of the sub-predicate in a subset constraint have to match the corresponding

roles of the super-predicate on a role by role basis. The equality constraint is a two-way

subset: it forces the two sets of tuples to be equal, as the name suggests.

In the example of Figure 5, the subset constraint spans the entire accepted predicate,

specifying that a paper needs to have been submitted to the conference, if it is to be

accepted.

Paper

(title)

accepted

Conference

(cname)

submitted

SUB

Fig. 5 Subset constraint

Subtype constraints.

This constraint is used to model usual subtyping situations. For example, the Man

and Woman entity types can be declared as subtypes of Person, as shown in Figure 6.

Woman

(wname)

Person

(name)

{Jeff,Jennifer,Jessica,James}

Man

(mname)

Fig. 6 Subtype and value constraints

Value and cardinality constraints.

A value constraint is used to enumerate the range of values that an entity type

may have. In the example of Figure 6, the allowed values for the Person entity type

are given explicitly. Value constraints can also be used with a range notation—e.g.,

one can specify that the Age value type needs to be a number between 1 and 150.

It is important to make the distinction between a value constraint, which specify the

allowed values in a type, and cardinality constraints, which specify how many elements

a type has. Clearly a value constraint implies an upper bound on the cardinality. Our

graphical notation does not reflect cardinality constraints, although they do exist in

the diagram. A cardinality constraint can be either a number or a range.
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Exclusion constraints.

This constraint is used to model a situation where a particular value can occur in

only one table in any valid model of the diagram. For instance, in a system that stores

the current state of papers, a paper cannot be both submitted and accepted. We will

see the graphical notation for exclusion constraints in Section 3.1.

Ring constraints.

A predicate represents a relation over the sets of values for each of the entities

playing roles in the predicate. For predicates with all roles played by the same entity,

we can specify various properties that the relation should possess. For example, in

Figure 7, we state that the works with predicate is symmetric. That is, if a person A

works with a person B, then B also works with A.

Person

(name)

works_with

SYM

Fig. 7 Ring constraint

Other types of ring constraints include acyclic, transitive, intransitive, reflexive,

irreflexive, and asymmetric.

3 Difficulty of Analyzing ORM

The problem we want to address is that of generating sample databases from ORM

diagrams. We assume that we receive as input an ORM diagram and we want to deter-

mine its satisfiability (i.e., the existence of data that populate all types and predicates

and satisfy all constraints). Some variants of ORM (including the one supported by the

tool used in our experiments) allow arbitrary query-like code (in Datalog or SQL) to

be used as a notation for constraints,1 making the problem of determining satisfiability

undecidable. (Although query languages guarantee termination, other common prob-

lems, such as query subsumption, are undecidable.) Even without allowing arbitrary

queries, undecidability is not uncommon when dealing with highly expressive integrity

constraints. For instance, the general class of “numeric dependencies” [8] in databases

has no decidable inference process.

Even if we limit ourselves to “standard” ORM constraints, however, the problem is

at least NP-hard. We next discuss the difficulties involved, and present a (failed) brute-

force attempt at the problem, which serves to frame our later restriction of ORM to a

simpler subset.

1 The full set of ORM constraints is not standardized (“not all versions of ORM support all
these symbols” [10]). The constraint that allows us to write queries as part of the diagram is
the asterisk (“*”) constraint—symbol 23 in [10].
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3.1 NP-Hardness

Our problem of producing satisfying data for ORM diagrams is NP-hard. Bommel et

al. have shown [28] the NP-hardness of some slightly different variants of the ORM

satisfiability problem. Nevertheless, it is easy to produce a much simpler NP-hardness

proof for our exact formulation of ORM and the satisfiability problem.

We reduce the well-known NP-complete boolean satisfiability problem, 3SAT, to

our problem. A 3-CNF formula has the form (a1 ∨ a2 ∨ a3) ∧ (b1 ∨ b2 ∨ b3) ∧ ...,

with a1, a2, a3, b1, ... representing expressions qi or ¬qi over a set of boolean variables

q1, q2, ..., qn. A CNF formula can be translated to an ORM diagram using the following

steps.

1. Introduce an object type for each variable qi in the CNF formula

2. Introduce an object type for each clause ci in the CNF formula

3. Impose a value constraint on each type introduced above. The value constraint

restricts each type qi to have just one value ‘qi’. Similarly, each clause is restricted

to have one value ‘ci’.

4. For each variable qi, let n be the number of times it occurs in the clauses ci to cj .

If n > 0, create a (n + 1)-ary predicate qi-true for the variable qi.

5. Similarly, for each variable ¬qi let m be the number of times it occurs in the clauses

ci to cj . If m > 0, create a (m+1)-ary predicate qi-false for the variable ¬qi.

6. Connect type qi to predicates qi-true and qi-false

7. Impose an exclusion constraint on the roles played by qi in qi-true and qi-false

8. Connect each clause ci to the predicate qi-true if it contains qi or qi-false if it

contains the variable ¬qi

Consider a CNF formula (q1 ∨ q2 ∨¬q3)∧ (q1 ∨¬q2 ∨ q3)∧ (¬q1 ∨ q2 ∨¬q3)∧ ...(...).

Figure 8 illustrates the relevant part of the formula’s transformation.

Based on the semantics of ORM constraints, it is easy to see that the 3SAT formula

is satisfiable iff the ORM diagram is satisfiable. The exclusion constraints on the roles

played by the qis force each value to appear in at most one of the qi-true or qi-false

predicates. Recall that there is an implicit disjunctive mandatory constraint over all the

roles played by the same type, since none of the types are “independent”. Therefore,

each qi value appears exactly once in the predicates. A similar implicit disjunctive

mandatory constraint on the roles played by the cis ensures that the single value of

each of these entities appears in at least one of the predicates, effectively implementing

a disjunction.

Note that the ORM satisfiability problem is NP-hard, but not clearly NP-complete.

Bommel et al. claimed an NP-completeness proof for their two satisfiability problems

[28]. The proof is based on a brute-force nondeterministic guess of the contents of each

predicate. The claim is that because all populations are bounded by m—the maximum

frequency constraint upper bound—one can nondeterministically choose populations

with up to m elements for each entity and predicate in polynomial time. Yet the

populations will be of up to size m, which is exponential relative to the representation

of m, which is the input to the problem. Thus the argument of Bommel et al. is wrong:

even a non-deterministic Turing machine cannot guess all possible populations in time

polynomial to the size of the input. (We reported this finding to the authors in May

2006.)

It is possible that when complex constraints are included (such as subset or ring

constraints) the problem is undecidable (or with a double-exponential complexity, if
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C3

{c3}

C2

{c2}

C1

{c1}

Q3

{q3}

Q2

{q2}

Q1

{q1}

q3-false

q2-false

q3-true

q2-true

q1-false

q1-true

X

X

X

Fig. 8 Example translation of 3SAT to ORM

there is a known size bound). Yet, for a simpler subset of constraints the problem is just

NP-complete, and for a yet simpler subset it is polynomial, as we discuss in Section 4.

3.2 Brute-Force Approach

As we saw, the ORM diagram satisfiability problem is fairly hard. There are, however,

good reasons to try a combination of brute-force translation and heuristic approaches.

There is a standard translation of ORM constraints to first-order logic (e.g., [9]) that

directly captures the semantic intricacies of constraints. At the same time, reasoning

tools have matured and state-of-the-art constraint solvers and SAT solvers often achieve

impressive scalability. In practice, we found the brute-force + heuristic approach to be

a bad fit for our problem. Nevertheless, the result yields insights that suggest a scalable

solution.

We translated ORM diagrams to inputs for two different tools: the CoBaSa tool

[20] and the Alloy Analyzer [14,25]. This is a good choice of candidate tools: Alloy

is well-known and mature, yet does not emphasize scalability, while CoBaSa offers

an expressive front-end, an efficient translation, and a state-of-the-art pseudo-boolean

constraint solver (PBS [1]) as its back-end. We used the standard translation of ORM

to first-order logic, customized to the needs of the tool at hand. Generally we map

every ORM predicate to a logic predicate, every value of an entity to a logical value,

and specify constraints using a logic notation. For instance, if there is a mandatory

constraint on the role played by the entity A in a predicate, this would translate to

CoBaSa as:

For_all a in A { Sum i in id tableA(i, a) >= 1 }
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Table 1 Relation (A,B,C) with frequency constraint of (min=2, max=3) spanning (B,C). B
and C are mandatory. PBS aborts SAT solving after 1500 seconds. The first four columns give
cardinalities. “vars” and “clauses” measure the complexity of the SAT problem. SAT indicates
a satisfiable problem. The last column is the CoBaSa processing time.

A B C pred vars clauses SAT time [s]
3 2 2 10 150 200 yes 0.23
3 2 2 15 225 300 no 197.92

10 2 2 12 264 240 yes 0.12
10 2 2 13 286 260 no 119.51
10 2 2 15 330 300 no 260.67
10 4 4 40 2000 3200 yes 0.90
10 5 5 25 no abort
10 5 5 70 4900 8750 yes 3.84
10 6 6 100 9400 18000 yes 4.76
10 8 8 150 23100 48000 yes 22.50
10 10 10 200 46000 100000 yes 68.14
10 10 10 250 57500 125000 yes 180.10

This states that every value in the domain of A has to occur at least once in tableA.

The results of one of our CoBaSa experiments are shown in Table 1. We use an

input with three entity types: A, B, C. These are linked with a single ternary pred-

icate (A,B,C) and a frequency constraint spanning (B,C). Furthermore, B and C are

mandatory. This simple input should yield a lower bound for the cost of adding more

complex constraints.

Overall, this approach does not scale very well. Even our simple, small examples

take minutes to process. The problem size (in terms of variables and clauses) scales

exponentially relative to the original input. (Note that the original input is the loga-

rithmic representation of the number n of entities, while the input to the solver is O(nc)

clauses—in this case c = 4.) We certainly cannot answer the question of whether a sat-

isfying configuration exists for realistic inputs (which will specify that entities contain

millions of objects: recall that we want to produce test databases that satisfy the stated

constraints). Our experience with the Alloy Analyzer was quite similar: we found it

unable to yield solutions for an example domain of 3 entities with 5 to 40 values each.

The problem is that the brute-force approach is not a very good fit for our problem.

It is much better for dealing with logically deep constraints, than with size constraints

on a large space. Nevertheless, the approach has value for detecting some unsatisfiable

(i.e., contradictory) configurations. It is often the case that a small model is sufficient

for disproving the consistency of constraints. This has been a standard argument for

practical uses of Alloy. For this to apply to our problem, the original ORM diagram

must contain no explicit size constraints on object types or role frequencies that will

make the search space unmanageable. A good example is a diagram that has no fre-

quency, value, or cardinality constraints but has a predicate with two ring constraints,

one irreflexive, one transitive, and two mandatory constraints on the same roles. This

is a logically unsatisfiable constraint system: a transitive relation on a finite space will

eventually include either a limit element or a cycle. The limit element cannot occur

on the right side of the relation (so the mandatory constraint is violated), and the

cycle (plus transitivity) contradicts the irreflexivity. This deep-but-not-size-sensitive

reasoning is handled well by a brute-force translation into input for constraint solvers.

Although the brute-force approach fails, it suggests the direction to proceed. The

problem with the brute-force approach is that it entails an inherent blowup in the
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problem size, because it models the interrelations of the members of types. This makes

the problem exponentially harder: for an input of N bits, the possible values are up to

2N and there are up to 22
N

possibilities for the contents of entities and predicates. For

complex constraints, such as ring, subset, and exclusion, this modeling seems necessary.

For other constraints, however, we only need to concern ourselves with the sizes of

types. Thus, if we limit ourselves to simple constraints that only deal with the sizes of

sets and not their contents, we can obtain a scalable solution. Fortunately, these simple

constraints turn out to be exactly the ones used overwhelmingly in practice.

4 ORM−: An Efficient and Expressive Subset

Given the difficulty of producing concrete data from full ORM specifications, we con-

centrated on a realistic subset of ORM. This subset was arrived upon through contin-

uous refinement over the course of several months, in consultation with engineers of

LogicBlox—a company that markets a database engine and ORM tools. The end result

is a subset of ORM that captures the most commonly used constraints in practice, yet

without sacrificing the ability to generate data very efficiently. We call our ORM subset

ORM− (pronounced “ORM minus”).

4.1 Definition of ORM−

ORM− is the ORM subset with the following constraints:

• Uniqueness constraints: only internal uniqueness (i.e., over roles in a single predicate)

is supported. Uniqueness constraints can span multiple roles, but no two uniqueness

constraints can overlap. E.g., it is not expressible that, in a single predicate, both

roles A-and-B and roles B-and-C form unique keys.

• Mandatory constraints on a single role. Disjunctive mandatory constraints are not

allowed, although the standard implicit disjunctive mandatory constraint holds, over

all roles played by the same (non-independent) type. Independent types are also

supported.

• Frequency constraints, which, just like uniqueness constraints, cannot overlap.

• Value and cardinality.

• Subtype constraints. We assume that a subtype’s value constraints specify a subset

of those of the supertype.

Notably absent are subset constraints, exclusion constraints, and ring constraints.

It is possible that some of those can be added while maintaining the desirable properties

of ORM− (i.e., sound and complete satisfiability decision in polynomial time).2 Some

additions (e.g., exclusion) immediately result in an NP-hard problem, however.

2 For instance, we speculate that with a more complex translation we can support exter-
nal uniqueness constraints, overlapping frequency constraints, as well as subset constraints
under the restriction that all other constraints on the superset predicate are identical to the
constraints of the subset predicate. We have not, however, attempted to prove that such a
generalization works.
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4.2 Testing Satisfiability for ORM−

A first question regarding satisfiability of ORM− is “what are instances of un-

satisfiability?” Diagrams in ORM− can be unsatisfiable for a variety of reasons. Figure 9

shows three examples.

Object Object1

{true,false}

Predicate0

# >= 1,000,000  

(a)

Object

Predicate

Object1

{true,false}

3

(b)

Object3Object2

Predicate2

Predicate1
2

(c)

Fig. 9 Three unsatisfiable diagrams.

The top example (a) represents a simple instance of contradictory cardinality con-

straints. (Recall that cardinality constraints are not depicted graphically in our dia-

grams, although they are maintained in the properties of diagram elements. In this case,

we show the constraint in a text comment.) The diagram cannot be satisfied since it

requires at least a million objects of one type (the designer wants a large test database)

but the type is in a one-to-one mapping with a subset of a two-object type. The middle

diagram (b) cannot be satisfied since the predicate needs to contain three tuples for

each left-hand-side value, yet the right-hand-side type has at most two values. This

requirement violates the implicit constraint that all tuples in a predicate be unique.

The bottom diagram (c) is a bit more interesting: through a cycle of constraints the

cardinality of type Object2 is required to be at least two times itself.

We can test the satisfiability of ORM− diagrams in polynomial time. The key

property of ORM− is that all its constraints can be expressed as numeric constraints

(inequalities) on the sizes of sets, instead of their contents. The sets are polynomial in

number, relative to the original input. Specifically, we translate all ORM− constraints

into numeric constraints of the form c · x ≤ y1 · y2 · ... · yn, or x ≤ y1 + y2 + ... + yn,

where c is a positive integer constant and x, y1, ..., yn are positive integer constants or

variables. Note that, although these are constraints on the integers (suggesting that the

problem is hard), we have no addition or multiplication of variables (i.e., unknowns)

on the left hand side of the inequality.
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Specifically, the translation rules are as follows (we list clarifying assumptions or

explanations as second level bullets):

• For each type A, introduce a fresh variable a, representing its cardinality. (We follow

this convention of upper and lower case letters in the following.) For each predicate

R, introduce a variable r, representing its cardinality (number of tuples—distinct by

definition). For each role in R played by type A, introduce a variable ra, representing

the number of unique elements from A in this role.

• Produce inequalities ra ≤ a, and ra ≤ r, for each role that type A plays in predicate

R.

• For each cardinality constraint that limits the cardinality of a type A to be in a range

min...max, produce inequalities min ≤ a and a ≤ max. Similarly for predicates.

– We assume, without loss of generality, that each type and predicate has a maxi-

mum cardinality constraint. (They already have a minimum cardinality constraint

of 1, as we do not want empty types or predicates in the solution.) In practice,

for types or predicates that do not have an explicit cardinality constraint, we can

produce the numeric constraint a ≤ M , where M is an upper bound of the size

of all entities or of the desired output (e.g., MaxInt).

• For each value constraint on a type A, produce inequality a ≤ ds, where ds is the

domain size defined by the value constraint.

– E.g., for a value constraint that restricts a type to four distinct values ds = 4.

For a value constraint of the form 5...30, ds = 26.

• For each mandatory constraint on the role played by type A in predicate R, produce

inequality a ≤ ra.

– Since we also have ra ≤ a for each role, the result is an equality, but all our

reasoning is done in the inequality form.

• For each frequency constraint, with frequency range fmin...fmax, on the roles played

in predicate R by types A, B, ..., K, introduce a variable rab...k, representing the

number of unique tuples in these roles. Produce the following inequalities:

r ≤ fmax · rab...k

fmin · rab...k ≤ r

rab...k ≤ ra · rb · ... · rk

ra ≤ rab...k, rb ≤ rab...k, ..., rk ≤ rab...k

– Note that we are representing the number of unique tuples only for sets of roles

that have a frequency constraint, not for all subsets of the roles of a predicate.

Note also that uniqueness constraints and constant frequency constraints are a

special case of the above. (A uniqueness constraint is a frequency constraint with

a minimum and maximum frequency of 1.)

• For each subtype constraint between types A and S, produce the inequality a ≤ s.

• For each predicate R with roles played by types A, B, ..., N, express the implicit

uniqueness constraint over all roles as follows: Produce inequality r ≤ rab...k ·rlm...p ·

... · rn, where the elements of the right hand side are all the variables corresponding

to the ranges of roles that participate in some frequency constraint on the predicate,

followed by all the variables corresponding to roles that are under no frequency

constraint.

– Recall that frequency constraints cannot overlap.

• For each non-independent type A that plays roles in predicates R, S, ..., V, introduce

the numeric constraint a ≤ ra + sa + ... + va.
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– This captures the implicit disjunctive mandatory constraint over all roles played

by a type: each object of a non-independent type needs to appear in some pred-

icate.

For illustration, consider the translation of the top example of Figure 9. If we call

the left type in the diagram “A”, the predicate “R”, and the right type “B”, and follow

our naming convention for numeric variables, we get the inequalities: 1000000 ≤ a

(cardinality on A), a ≤ ra (mandatory on A), r ≤ ra (uniqueness on role of A), r ≤ rb

(uniqueness on role of B), b ≤ 2 (value on B), as well as the implicit constraints on

roles: ra ≤ a, ra ≤ r, rb ≤ r, rb ≤ b, and the implicit cardinality constraints that

make every variable at least 1 and smaller than a constant upper bound. (We omit the

implicit uniqueness over all roles, and the implicit disjunctive mandatory constraint, as

they are redundant for this example. The implicit mandatory constraint cannot be used,

anyway, unless we know that the elements shown constitute the whole diagram and not

just a part of it.) It is easy to see that these numeric constraints imply 1000000 ≤ 2—a

contradiction.

The above translation supports the key properties of ORM−: The translation is

sound and complete, in that an ORM diagram is satisfiable if and only if the inte-

ger inequalities resulting from the translation admit a solution. Furthermore, solving

the inequalities can be done in polynomial time. Note that the above does not mean

that every dataset whose type, role, and predicate cardinalities satisfy the integer in-

equalities will satisfy the ORM constraints! Instead, it means that for every satisfying

assignment of the integer inequalities, we can produce some dataset that will satisfy

the ORM constraints.

We next present the key arguments establishing these properties: We first show

how to satisfy the diagram constraints if the inequalities have a solution, and then

discuss how we can check the inequalities in polynomial time.

Sound and Complete Decision.

If the ORM constraints are satisfiable, then the numeric constraints also hold: the

numeric constraints just capture size properties of sets of values that satisfy the ORM

constraints. The inverse direction is harder, but our process of showing this also yields

a way to produce objects that satisfy the ORM constraints. Starting from an integer

variable assignment satisfying all inequalities, we can show that there exists a data set

that satisfies the original ORM constraints, as follows:

Algorithm 1: Existence of Satisfying Data Assignment

• For each type A without a subtype, create a new objects from the set specified by the

type’s value constraint (if one exists). (We follow our lower/upper case convention—

i.e., a is type A’s cardinality in the solution of the size inequalities.) The crucial

observation is that ORM− constraints do not restrict which of these objects partici-

pate in a role, predicate, or type, except in three cases: a subtype should only contain

objects from its supertype; the objects in a role RA on predicate R played by type

A should be a projection over RA of all the tuples of any range of roles that includes

RA, including the entire R; the implicit disjunctive mandatory constraint should

hold: each object of a type should participate in one of the roles. We can satisfy

these requirements with an appropriate choice of objects. Note that in this section

we discuss enumerations of objects without specifying in detail how the enumeration
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is produced, as long as it is clear that one exists. The exact efficient algorithm for

generating the desired data is described in the next section (4.3).

• For each supertype B of a type that has been populated with objects, pick b objects so

that they include the objects in the subtype. (Recall that the value constraints of the

subtype specify a subset of the value constraints of the supertype, per the definition

of ORM−.) Repeat until all types are populated. The ORM subtype constraints of

the diagram are now satisfied, as are any value and cardinality constraints on types.

• For each type A, populate all roles RA, SA, ..., VA that A plays with ra, sa, etc.

elements. If A is not independent, ensure that all elements of A participate in some

role. This is possible since a ≤ ra+sa+...+va . After this step, the implicit disjunctive

mandatory and any explicit mandatory constraints of the ORM diagram are satisfied,

by straightforward properties of the construction.

• At this point all roles are populated with the unique objects they contain. (I.e.,

we have computed the projection of each predicate on each role.) For each range of

roles RA, RB , ..., RK that participate in a frequency (or uniqueness, as a special

case) constraint, pick rab...k distinct tuples so that their projections on roles are

the computed population of RA, RB , etc. Such tuples are guaranteed to exist since

rab...k ≤ ra · rb · ... · rk.

• Finally, for each predicate produce its entire contents by enumerating the unique

combinations of the sub-tuples from each range of roles that participates in a fre-

quency constraint, and the objects in the roles that are yet unfilled (i.e., roles that do

not participate in frequency constraints) until producing r tuples. This is guaranteed

to be possible since r ≤ rab...k · rlm...p · ... · rn. The enumeration of tuples should be

done so that the sub-tuples from roles in frequency constraints are covered evenly

(i.e., two sub-tuples of the same role range are used either the same number of times

or with a difference of one) and all objects from roles that are not under frequency

constraints are used. This is guaranteed to produce the right frequencies for the con-

tents of ranges of roles used in frequency constraints, since for each such range RA,

..., RK , we have r ≤ fmax · rab...k, or r/rab...k ≤ fmax, and similarly for fmin. That

is, in producing r complete tuples, we are guaranteed to repeat each sub-tuple in role

range RA, ..., RK at least fmin and at most fmax times.

Polynomial Testing.

We can test the satisfiability of numeric inequalities produced by our translation

through a fixpoint algorithm. Recall that all of our constraints are of the form c · x ≤

y1 · y2 · ... · yn, or x ≤ y1 + y2 + ... + yn, where c is a positive integer constant and x,

y1, ..., yn are positive integer constants or variables.

Algorithm 2: Polynomial Satisfiability Check

1. We first rewrite all inequalities of the form c·x ≤ y1·y2·...·yn into x ≤ (y1·y2·...·yn)/c.

2. For each variable, we can maintain its current upper bound (recall that we assume

cardinality constraints for all entities and predicates in the original input, although

these can be MaxInt) and, on every step, we substitute the current upper bounds

for all variables on the right hand side of each inequality and perform the arithmetic

operations (the division is integer division, performed after all multiplications). This

produces candidate upper bounds for variables. The minimum of the candidate

upper bounds for a variable and its current upper bound becomes the variable’s

upper bound for the next step.
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3. Step 2 repeats until either an upper bound crosses a lower bound (i.e., we get

x ≤ k and m ≤ x, where m > k for some variable x) or all upper bounds remain

unchanged during a step. The former signifies an unsatisfiable case, the latter a

satisfying assignment.

This algorithm is correct because it maintains a conservative upper bound on car-

dinalities on any step. Any satisfying assignment will need to have values at most equal

to the respective upper bounds. When the algorithm reaches a fixpoint, all inequalities

are satisfied by the current upper bounds, which, thus, constitute a solution.

It is easy to see that this algorithm runs in polynomial time relative to the size of the

input. The fixpoint computation runs a polynomial number of times between successive

applications of inequalities that contain division, i.e., of the form x ≤ (y1 ·y2 · ... ·yn)/c.

(Inequalities of other forms do not shrink the strictest upper bound in the system, only

propagate it to new variables. If there are n variables in the system, each inequality

of a different form can yield a different upper bound at most n times: the variable on

its right hand side with the smallest current bound can never get any smaller, as it

satisfies all other inequalities in whose left hand side it appears—since the right hand

sides can only have multiplication with positive integers. Similarly, the second-smallest-

upper-bound variable will never get smaller after one round, the third will not shrink

after two rounds, etc.) Hence, the only reason that candidate upper bounds may keep

becoming smaller is inequalities that contain the division operator. Yet each of those

can apply at most a number of times logarithmic relative to the value of the original

upper bounds (since it reduces the upper bound by a multiplicative factor) which is

polynomial relative to the input size.

Discussion and Insights.

A polynomial solution to this problem exists only because there is no addition or

multiplication of variables on the left-hand side of an inequality (i.e., all our arithmetic

operations are on upper bounds, yielding a monotonicity of the problem). Interest-

ingly, simple additions to the ORM− constraints result in addition or multiplication

on the left-hand side, and make the problem NP-hard. For instance, adding exclusion

constraints corresponds to variable addition on the left-hand side. Also, our constraint

language does not support anything like an (imaginary) “external mandatory” con-

straint, that would require all combinations of objects (cross product) of two types

to appear in a single predicate. Such a constraint would result into multiplication of

variables on the left-hand side. For such richer languages, it is straightforward to show

NP-hardness by taking techniques from the domain of integer inequalities and mapping

them back to our constraints. E.g., with just multiplication of integers, we can encode

an instance of 3SAT as a set of inequalities. For each propositional symbol qi and its

negation, we introduce two integer variables xi and x′

i, both of which take values from

1 to 2 (for false and true, respectively). Then a clause like (q1 ∨ q2 ∨¬q3) gets mapped

into 2 ≤ x1 · x2 · x′

3. Multiplication on the left hand side of an inequality is used to

establish that no symbol and its negation can be simultaneously true: xi · x
′

i ≤ 2. Our

sound and complete translation of Algorithm 1 can then be used as the basis for de-

riving an inverse transformation where the inequalities get mapped back to diagrams

that are only satisfiable if the respective inequalities are.
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4.3 Generating Data

The previous section gave a sound and complete algorithm for determining the satis-

fiability of ORM− diagrams. The completeness depended on creating model data that

satisfy the constraints of the diagram. This process is precisely how we generate test

data. Nevertheless, it is not immediately obvious how to do this efficiently. Namely, al-

though it is clear that producing the desired combinations of values is possible (because

of the combinatorics entailed by the numeric constraints) it is not clear that doing so

does not require a super-exponential search: The universe of potential output tuples is

exponential relative to our input, and having to do a naive trial-and-error search for

a set of tuples in this exponential space would yield prohibitive (double-exponential)

complexity. We next discuss how the enumerations of the previous section can be pro-

duced efficiently.

To see a typical enumeration problem, consider an example set of cardinalities for

a predicate P. If p = 15 (i.e., we want to generate a table for P with 15 tuples in

it), pa = 4, pb = 6, pc = 2 (i.e., 4, 6, and 2 distinct elements of types A, B, and C,

respectively, participate in predicate P) how can we generate such tuples, so that they

also satisfy the frequency constraint that every element in role PA (i.e., each one of the 4

elements of type A that participates in P) appears between 3 and 5 times? (We assume

all constraints are otherwise satisfiable, i.e., the above assignments were produced after

a successful run of Algorithm 2.) This instance is typical of the enumeration problems

that our implementation is called upon to solve.

Recall the observation from Algorithm 1: We can address any satisfiable frequency

constraints by just ensuring that sub-tuples from roles in frequency constraints are

covered evenly (i.e., two sub-tuples of the same role range are used either the same

number of times or with a difference of one). In our example, each of the 4 elements of

role PA should be used either 3 or 4 times in the 15 total tuples.

The main workhorse of our data generation is an algorithm for addressing the above

requirements for generating pairs of values from two sets. Specifically, for two sets of

values, the enumeration algorithm produces combinations of the values with maximum

and even coverage (i.e., all values from the two sets are used in tuples, and two values

from the same set are either used the same number of times or with a difference of

one) and the combinations also have maximum and even coverage (i.e., no combination

repeats).

The enumeration algorithm, given input sets S and T and a desired number of

output pairs n is below. The algorithm produces either n pairs or the maximum number

of unique pairs, whichever is lower.

ia := 0, ib := 0, i := 0;
while i < n and i < |S| · |T | do

produce(Sia , Tib);
ia := (ia + 1) % |S|;
ib := (ib + 1) % |T |;
if (i + 1) % lcm(|S|, |T |) = 0 then

ib := (ib + 1) % |T |;
end

i := i + 1
end

(Sx denotes the x-th element of the set, % is the modulo operator, |S| denotes the

cardinality of the set, and lcm is the least common multiple of two numbers.)
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In other words, the enumeration algorithm cyclically traverses both sets at the same

time, matching their elements one-by-one to create pairs. When the pairs are about

to start repeating (after every l-th iteration, where l is the least common multiple of

the two set sizes) one set is cyclically shifted by one. This guarantees that all elements

are covered equally, as the indices of both sets go over all their elements in a round

robin fashion, and all possible combinations are exhausted. To show this rigorously,

consider the case of the algorithm producing a pair that has also appeared before. The

two instances of the pair are separated by a distance which is a multiple of |S|: c1 · |S|

(since the first set is just always traversed cyclically) as well as equal to c2 ·|T |+k, where

k is the number of cyclic shifts in the second set that have occurred in the meantime.

Thus, c1 · |S| = c2 · |T | + k. Consider now the greatest common divisor, g, of |S| and

|T |. Since g divides the left hand side of the equation, it also divides the right hand

side, and since it divides |T | it also needs to divide k. Thus, pairs repeat only after a

multiple-of-g number of shifts have occurred. Since, however, every shift happens after

l pairs are produced, where l is the least common multiple of |S| and |T |, the distance

between repeated pairs is (at least) a multiple of g · l. From arithmetic, the product

of the greatest common divisor and the least common multiple of two numbers is the

numbers’ product, hence pairs do not repeat until all |S| · |T | possible pairs have been

exhausted, which is prevented by the loop condition.

For tuples of higher arity (triples, quadruples, etc.), we can invoke this enumeration

algorithm repeatedly with one of the input sets being the output of the previous step.

For instance, in our example, we can first generate 15 pairs of the 4 elements of type

A and the 6 elements of type B, and then combine these pairs with the 2 elements of

type C. If set A contains elements I , II , III , IV , set B contains elements a, b, c, d, e,

f , and set C contains elements 0,1, then the triples produced will be (in order): [I, a,

0], [II, b, 1], [III, c, 0], [IV, d, 1], [I, e, 0], [II, f, 1], [III, a, 0], [IV, b, 1], [I, c, 0], [II, d,

0], [III, e, 1], [IV, f, 0], [I, b, 1], [II, c, 0], [III, d, 1].

The cost of this data generation algorithm is clearly linear in the amount of data

generated (assuming constant-time arithmetic). In this sense, the algorithm is opti-

mally efficient. An important note is that the notion of efficiency differs in this section

from that in previous ones. Previous sections examined possible solutions from the

perspective of the satisfiability of ORM diagrams. This section deals with producing

test data that satisfy the diagrams. Which problem we choose affects our asymptotic

analysis arguments. When producing test data, the output can be exponentially larger

than the input, so it makes sense to express run-time complexity relative to the size of

the output and not, as in previous sections, of the input.

We can now see in detail how to produce test data that satisfy all constraints, by

combining Algorithm 1 of the previous section with our value enumeration approach.

(Recall that Algorithm 1 just proves that there exist data that satisfy the constraints,

whereas here we are interested in how exactly to generate such data without excessive

search.)

• Data generation for the first two steps of Algorithm 1 is easy. We only need to “create

a new objects” (possibly from a range specified by a value constraint) and “pick b

objects so that they include the objects in the subtype”. These tasks are clearly of

linear complexity in the amount of values generated.

• The next step of Algorithm 1 requires populating for each type A all roles RA, SA,

..., VA, so that, if type A is not independent, all its elements participate in some

role. We can satisfy this by picking an ordering of the roles RA, SA, ... , VA that A
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plays. We then populate RA with the first ra elements of A, SA with the next sa

elements, etc. Since a ≤ ra + sa + ... + va (for a non-independent type) this process

will exhaust the elements of A, possibly before exhausting the roles. Repeat from the

first element of A in round-robin fashion, until all roles are populated. Again, this

data generation process is linear in the amount of generated data.

• The next two steps of Algorithm 1 require producing combinations of existing sets

of values, so that uniqueness and frequency constraints are satisfied. First, for each

frequency constraint over roles RA, RB , ..., RK we need to generate rab...k unique

tuples from combining the ra, rb, ..., rk values of the component sets. We do so by

repeatedly employing our enumeration algorithm, above. (The algorithm enumerates

pairs of values from two sets at a time, so conceptually it needs to be repeatedly

applied to its previous output and a new set. In practice, the repeated application

can be optimized into a single loop over all input sets.) Second, we need to generate

r unique tuples for each predicate R in such a way that frequency constraints are

satisfied. Again, we employ our enumeration algorithms on two sets at a time, where

the sets either contain values from a role that is not under a frequency constraint, or

sub-tuples from roles in frequency constraints. Our enumeration algorithm guarantees

the satisfaction of the frequency constraints, because of its even coverage. Note that

the final invocation of the enumeration algorithm is guaranteed to produce exactly

the desired number, r, of tuples since for every predicate R we have the constraint

r ≤ rab...k · rlm...p · ... · rn (i.e., r does not exceed the number of combinations of

unique values).

In summary, our approach efficiently generates test data that satisfy a given set of

ORM− constraints.

5 ORM Diagrams in Practice

To validate the usability of ORM−, we examined the use of ORM in practice by

looking at example diagrams provided by our industrial partner, LogicBlox Inc. The

diagrams model a range of consulting, internal use, and benchmarking projects: a retail

prediction application, a cell bandwidth prediction application, a standard database

benchmark (TPC-H), and various internal tools. These diagrams are the whole set

of ORM data that LogicBlox has available: no selection or other filtering took place.

There are, however, threats to the representativeness of the data: the majority of the

diagrams were developed by a single engineer, and all diagrams model implementations

that use the same database back-end. Nevertheless, given the variety of diagrams and

domains, as well as the input we received in personal communication with multiple

developers, we believe our study and findings to be highly valid.

Table 2 summarizes the elements of our ORM diagrams. There are 5 distinct

projects, each with one or more documents, which in turn contain one or more di-

agrams. Each row represents a document and clusters of rows represent a project. For

instance, the first project contains a single document with 7 diagrams, while the second

project contains 9 documents, the largest of which has 46 diagrams. Diagrams in the

same document are just different views: they can share entities and predicates, while

omitting detail that is unnecessary for the aspect currently being modeled.

Overall, we analyzed 168 diagrams with about 1800 constraints. The vast majority

of constraints are in the ORM− subset. Only 24 constraints are not supported by
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Table 2 Elements found in ORM diagrams in practice. Dgr:# diagrams in the document. Ent:# entity types. Val ctr:# value constraints (on entity
and value types, separately). IsA:# entity types that have a super type. Indp:# independent entity types. Val:# value types. Ent ref:# entity references.
Rel cont:# relation container entities. Rel:# relations (predicates). Mnd:# mandatory constraints. Unq int:# internal uniqueness constraints. Frq:#
frequency constraints. Unq ext:# external uniqueness constraints. Eq:# equality constraints. Ring AC:# acyclic constraints (ring). Usr:# user-defined
constraints, not counting comment-only constraints. We did not see any other ORM predefined constraints such as irreflexive, intransitive, asymmetric,
etc.

Dgr Ent Val IsA Indp Val Val Ent Rel Rel Mnd Unq Frq Unq Eq Ring Usr
ctr ctr ref cont int ext AC

co 7 21 0 0 0 17 2 0 0 57 0 56 0 0 0 0 4
la 11 19 3 2 3 0 0 8 0 71 7 64 0 0 0 0 0
lb 11 31 12 4 12 15 0 0 0 55 6 55 0 0 1 3 0
ld 7 6 0 1 0 1 0 15 1 76 0 73 0 0 0 0 0
le 1 3 0 1 0 0 0 2 0 5 4 4 0 1 0 0 0
ll 12 24 7 11 6 1 0 10 0 50 20 49 0 0 0 0 0
lol 12 32 6 10 5 0 0 12 0 112 0 111 0 0 0 0 0
lor 4 23 2 14 2 0 0 5 0 44 6 45 0 0 0 1 0
ls 1 4 0 0 0 0 0 5 0 17 0 17 0 0 0 0 0
lu 46 94 48 31 47 0 0 12 1 528 1 523 0 0 0 0 1
mc 1 2 0 0 0 3 0 0 0 4 0 4 0 0 0 0 0
md 1 1 0 0 0 0 0 2 0 4 0 4 0 0 0 0 0
mf 1 5 1 1 0 1 0 0 0 4 8 4 0 0 0 0 0
mm 3 9 0 2 0 5 0 0 0 16 8 16 1 1 1 2 1
m 1 2 0 0 0 1 0 0 0 3 0 3 0 0 0 0 1
mo 5 22 3 13 4 0 0 13 0 65 6 66 0 0 0 1 0
mp 2 2 1 0 1 0 0 5 0 20 0 15 0 0 0 0 0
mre 3 4 0 0 0 11 1 0 6 25 10 15 0 0 0 0 0
mru 2 2 0 0 0 0 0 7 0 18 0 14 0 0 0 0 0
mu 9 8 6 0 0 0 0 27 0 84 0 48 0 0 0 0 0
mv 3 9 7 0 7 0 0 10 0 45 0 35 0 0 0 0 0
ro 13 24 0 0 0 11 1 13 0 83 0 75 0 0 0 0 5
sb 1 5 4 0 4 2 0 0 1 3 0 3 0 0 0 0 1
sl 1 3 0 0 0 2 0 0 0 4 0 4 0 0 0 0 0
st 10 11 1 0 1 22 0 0 1 64 35 63 0 0 0 0 0
total 168 366 101 90 92 92 4 146 10 1457 111 1366 1 2 2 7 13
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ORM−. Of these, 13 are user-defined constraints: they add arbitrary (query) code to

the high-level diagram. This means that the developer adds consistency code (e.g.,

“this predicate is the join of two others over these roles”) to be generated together

with normal consistency code that the ORM editor produces (e.g., for uniqueness,

frequency, value, or mandatory constraints). Checking the satisfiability of such user-

defined constraints seems unlikely, as this is an undecidable problem for the general

query language. Thus, we do not believe that there is significantly more benefit to

get over what ORM− already achieves. A promising direction may be acyclicity ring

constraints, which comprise 7 of the remaining 11 constraints that ORM− does not

handle.

Our analysis did not find interesting errors in the ORM documents. There were

19 cases of unsatisfiability, but all were relatively benign: an entity or value was not

connected to any role or supertype. Nevertheless, finding no errors is hardly surprising

for this dataset since the ORM tool generates consistency checking code (in Datalog)

automatically. Therefore, mistakes in the specification are overwhelmingly likely to be

caught when the database is populated with real data, and the diagrams we examined

have produced databases that are in real use.

The run-time of our satisfiability check was negligible. Satisfiability checking is done

on a per-document basis and on a 2 GHz AMD Athlon 64 X2 machine checking the

largest document (with 528 predicates) takes about 35ms. Thus, satisfiability checking

is fast enough to be done interactively inside the ORM editor, while the user is editing

diagrams. Test data generation takes time proportional to the output, however, and

thus needs to be done offline.

The tendency we observe is for developers to prefer to encode complex constraints in

code, rather than using the semantically complex constraints of the modeling language.

The modeling language is instead used for easier constraints that developers feel very

comfortable with. One possible motivation may be exactly the lack of good tools for

consistency checking. Since the ORM editor works as a code generator, errors in an

ORM diagram stay undetected until later, when the database is populated. Going back

and fixing the diagram is costly at this stage: it requires re-generating the database

schema and the consistency code, re-importing data, and possibly dealing with the re-

integration of hand-written code that was implemented against the faulty database. It

is, thus, possible that tools like ours will encourage the use of more complex constraints.

6 Related Work

There are several earlier approaches to automatic example data generation. Compared

to other work on checking the satisfiability of ORM, ours is distinguished by its com-

pleteness (for ORM−) and emphasis on practicality. Jarrar and Heymans [15] use the

fact that “no complete satisfiability checker is known for ORM” to motivate the in-

troduction of 9 unsatisfiability patterns that capture conceptual modeling mistakes.

The presence of these patterns can be checked with a program search. Heymans [13]

describes a translation of a subset of ORM to a formalism with an ExpTime decision

procedure. Keet [17] reduces another subset of ORM (emphasizing ring constraints) to

Description Logic languages. These reductions follow the general pattern of the stan-

dard translation of ORM to logic, and are not intended for efficient execution. We are

working on the problem from the opposite end, and it may be interesting to try to
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extend ORM− when greater expressiveness is needed, rather than to try to restrict

larger fragments.

Wilmore and Embury [30] propose an intensional approach to database testing,

which is closely related in spirit to our test of constraint satisfiability. Nevertheless,

they do not address the fundamental undecidability of the language they support, so

their technique is heuristic, without a clear understanding of its expressiveness and

limitations.

Other database testing techniques, such as that of Deng et al. [4], concentrate on

producing test databases with arbitrary values or after pruning illegal values through

heuristics. A more formal approach is followed by Neufeld et al. [23]: constraints are

translated into logic and a generator specification is derived semi-automatically (user

control may be needed) from the logical formula. This approach is, again, heuristic, in

that it may not be able to produce appropriate data. Nevertheless, it offers a way to

handle complex constraints in a unifying framework.

There is significant work in databases on the satisfiability of different kinds of

constraints. Fan and Libkin [7] address XML document specifications with DTDs and

integrity constraints. Calvanese and Lenzerini study the interaction between subtype

and “cardinality” constraints [3]. (The latter correspond roughly to what we called

“frequency” constraints in ORM.) Both of the above pieces of work are interesting

because they use integer constraints for some of their formulations. Nevertheless, the

kinds of constraints supported are significantly different from the ORM constraints we

tackled. For instance, a key element in the Calvanese and Lenzerini work is that a

subtype can refine the cardinality constraint of its supertype. E.g., we can specify that

objects of type Person appear at least 3 times in some table, yet objects of subtype

Man can appear at most 5 times.

In terms of consistency reasoning for modeling languages, UML is a common focus.

UML is really a collection of specification languages that cover many aspects of object-

oriented development—from problem specification over class diagrams, to module in-

teractions, to software deployment. Egyed presents a fast technique for maintaining the

consistency of different UML diagrams [5]. Recent work also proposes actions for fixing

inconsistencies [22,6]. Nevertheless, neither the core problem we target (inconsistency

under all inputs) nor the kinds of constraints we support are closely related to that

work.

Beradi et al. follow an approach similar to ours, by restricting the expressiveness of

UML class diagrams to a decidable subset [2]. I.e., they also exclude user-constraints,

which can contain arbitrarily complex expressions in full first-order logic. They prove

their resulting language ExpTime-complete and present a mapping to description logic.

ORM−, in contrast, is decidable in polynomial time.

In addition to an ExpTime subset of UML class diagrams, Kaneiwa and Satoh

also propose restrictions that enable consistency checking in P, NP, and PSpace [16].

Maraee and Balaban [21] discuss the efficient satisfiability of UML class diagrams by

translating them into linear inequalities, much like our approach. But it remains unclear

what proportion of UML class diagrams in practice can be handled with these subsets.

It would be interesting to apply our algorithms to UML class diagrams and determine

how many UML class diagrams our algorithms can handle in industrial practice.

Lenzerini and Nobili show that polynomial-time consistency checking of database

specifications that include cardinality constraints is possible [19]. They work on Entity-

Relationship Model (ERM) diagrams that include a form of frequency constraint but

not the additional constraints we support, such as mandatory and subset. We extend
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this work by giving fast algorithms for both consistency checking and test case gen-

eration. We also provide empirical results on which proportion of real-world database

specifications our technique covers.

Alloy has been applied successfully in several other domains. Warren et al. com-

pile software architecture specifications to Alloy to check their consistency before per-

forming a proposed software architecture reconfiguration [29]. Khurshid and Jackson

discovered bugs in the Intentional Naming System (INS) by modeling and checking

it with Alloy [18]. Finally, several translation schemes from Java to Alloy have been

proposed: Taghdiri’s [27] is a good example.

7 Conclusions

Producing example data that meet a given specification enables interactive checking

of a data model and testing of the implementation with large amounts of consistent,

automatically produced data. In this article we presented an important advance in

the direction of generating test data from modeling diagrams. We proposed a subset,

ORM−, of the popular ORM modeling language. For models written in this subset,

we presented algorithms for determining the satisfiability of the model, as well as

for producing data conforming to the model. An analysis of practical uses of ORM

diagrams confirmed that the constraints we target are sufficient for covering the vast

majority of real-world uses.

We believe that our results likely generalize to other settings, as the constraints in

ORM− are fairly standard. Much of the power of our approach comes from our support

of multi-role frequency and uniqueness constraints. Interestingly, these constraints are

also useful for providing input to the test data generation process. For instance, a

user wishing to produce a set of random data is likely to use frequency constraints to

specify his/her expectation as to how many times each value is used in a table. Thus,

our constraint language can be viewed both as a way to specify a data schema (for

later real use) and as a way to specify desired properties of an automatically generated

sample dataset. This, combined with its other desirable properties, makes our approach

a strong candidate for wide practical adoption.
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