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1 Introduction

One of the biggest challenges in software evolution is maintaining the relation-
ships between existing program structures. Changing a program component (e.g.,
a class, interface, or method) typically requires changes in multiple other com-
ponents whose structure or meaning depend on the changed one. The root cause
of the problem is redundancy due to lack of expressiveness in programming lan-
guages: Extra dependencies exist only because there is no easy way to model one
program component after another, so that changes to the latter are automati-
cally reflected in the former. For example, in the Enterprise Java Bean (EJB)
standard, local and remote stub interfaces must mirror the bean class structure
exactly. A change in the bean interface must be propagated to the stub inter-
faces, as well. Tools and methods have been developed to support writing code
that is immune to changes in program structure (e.g., [10,11]). But these tools
either require separate declarations of a program’s structural properties (e.g.,
class dictionaries in [11]), or use potentially unsafe runtime reflection [10]. Fur-
thermore, these tools focus on adapting code, and not the static structure of a
class or interface, to evolving program structure.!

Another obstacle in software evolution is the extensibility of software compo-
nents, particularly when source code is unavailable. Aspect Oriented Program-
ming (AOP) [9] and its flagship tools, such as AspectJ [8] provide a solution
approach. AspectJ allows a programmer to extend a software component by
specifying extra code to be executed, or even change the component’s original
semantics entirely by circumventing the execution of original code, and pro-
vide new code to execute in its place. Aspect] is a powerful tool, but often
has to sacrifice either discipline or expressiveness. For example, AspectJ aspects
are strongly tied to the components they apply to—there is no notion of type-
checking an aspect separately from the application where it is used. This means
that generic AspectJ aspects (i.e., aspects that are specified so that they can
be later applied to multiple, but yet unknown, components) are limited in what
they can express. For example, AspectJ cannot express intercepting all calls to
the methods of one class, and forwarding them to methods of another class, us-
ing the intercepted arguments: the aspect to do so needs to be custom-written

! Tools have been developed to specifically target generating EJB stubs [5] so that
consistency between the bean class and its stubs is managed automatically. But this
is a solution to one specific problem, and not generally applicable.



for the specific classes, methods, and arguments it will affect. AspectJ also does
not provide explicit means of controlling aspect application. For example, the
order of aspect composition may affect behavior in ways unanticipated by the
developers.

With these two obstacles in mind, we recently introduced a language feature
that we call “morphing” [7]. Morphing supports a powerful technique for software
evolution, and it overcomes many of the shortcomings of existing solutions. We
discuss morphing through MJ—a reference language that demonstrates what we
consider the desired expressiveness and safety features of an advanced morphing
language. MJ morphing can express highly general object-oriented components
(i.e., generic classes) whose exact members are not known until the component is
parameterized with concrete types. For a simple example, consider the following
MJ class, implementing a standard “logging” extension:

class MethodLogger<class X> extends X {
<Y*>[meth] for(public int meth (Y) : X.methods)
int meth (Y a) {
int i = super.meth(a);
System.out.println("Returned: " + i);
return i;
}
}

MJ allows class MethodLogger to be declared as a subclass of its type param-
eter, X. The body of MethodLogger is defined by static iteration (using the for
statement—the central morphing keyword) over all methods of X that match the
pattern public int meth(Y).Y and meth are pattern variables, matching any type
and method name, respectively. Additionally, the * symbol following the decla-
ration of Y indicates that Y matches any number of types (including zero). That
is, the pattern matches all public methods that return int. The pattern vari-
ables are used in the declaration of MethodLogger’s methods: for each method of
the type parameter X, MethodLogger declares a method with the same name and
signature. (This does not have to be the case, as shown later.) Thus, the exact
methods of class MethodLogger are not determined until it is type-instantiated.
For instance, MethodLogger<java.io.File> has methods compareTo and hashCode:
the only int-returning methods of java.io.File and its superclasses.

MJ morphing supports disciplined software evolution in the following ways:

— MJ allows a class’s members to mirror those in another class, e.g., one of its
type parameters. The structure of an MJ generic class adapts automatically
to the evolving interfaces of its type parameters. (MJ’s for construct can
also be used in declaring statements. Thus, MJ can be used to adapt code
to changing program structures, as well.)

— MJ generic classes support modular type checking—a generic class is type-
checked independently of its type-instantiations, and errors are detected if
they can occur with any possible type parameter. This is an invaluable
property for generic code: it prevents errors that only appear for some type
parameters, which the author of the generic class may not have predicted.



— MJ allows programmers to use both a “transformed” version of a class and
the original class at will. For example, a programmer may refer to both
the original java.io.File and its logged version MethodLogger<java.io.File>
within the same piece of code.

— Order of composition is explicit in MJ: given two MJ classes, adding two
pieces of functionality, e.g., logging through MethodLogger and synchroniza-
tion through MethodSynchronizer, applying logger before synchronizer is sim-
ply, MethodSynchronizer<MethodLogger<java.io.File>>.

In addition to the above properties, MJ differs from existing “reflective” pro-
gram pattern matching and transformation tools [2-4,12] by making reflective
transformation functionality a natural extension of Java generics. For instance,
our above example class MethodLogger appears to the programmer as a regular
class, rather than as a separate kind of entity, such as a “transformation”. Using
a generic class is a matter of simple type-instantiation, which produces a regular
Java class, such as MethodLogger<java.io.File>.

We next elaborate on how MJ morphing supports adaptation to evolving
program structures and its modular type safety properties through examples.

2 Adapting Structure to Changing Structures

The structure of an MJ generic class can evolve consistently with the structure
of its type parameter. This property allows writing feature extensions and adap-
tations that are inherently evolvable. We illustrate the benefits of this property
using a common design pattern: wrapper [6]. A wrapper class declares the exact
same methods as the class it wraps. It delegates each method call to the wrapped
class, adding functionality before or after the delegation. The MethodLogger class
of the previous section is a classic wrapper.

For a real world exposition of the wrapper pattern, consider the
class java.util.Collectioms, a utility class provided by the Java Collec-
tions Framework (JCF) [l]—the standard Java data structures library.
java.util.Collections provides a number of methods that take a particular kind
of data structure, and return that data structure enhanced with some additional
functionality. For example, the method synchronizedCollection(Collection<E>
c) takes a Collection c¢, and returns a synchronized version of that
collection. The implementation of this method returns an instance of
the wrapper class SynchronizedCollection<E>. For each method in the
Collection interface, SynchronizedCollection defines a method with the ex-
act same signature. The bodies for these methods all first synchronize
on a mutex, and then delegate the call to the underlying Collection
object. java.util.Collections offers similar methods that return synchro-
nized versions of other kinds of data structures: synchronizedSet(Set<E>),
synchronizedSortedSet (SortedSet<E>), synchronizedList(List<E>), etc. Each
of these methods, in turn, requires its own wrapper class definition:
SynchronizedSet<E>, SynchronizedSortedSet<E>, SynchronizedList<E>, etc.



Note that these wrapper class definitions are tightly coupled with the inter-
face of the data structures they are wrapping. If the interface of Collection<E>
changes (e.g., a new method is added, or an existing method is now taking an
extra argument), the class SynchronizedCollection<E> needs to be redefined, as
well. Note also the redundancy at both the class and the method level. At the
class level, all Synchronized* wrapper classes have the same structure, yet one
wrapper class needs to be defined for each data structure to be synchronized. If
the need to synchronize a new data structure arises, then a new wrapper class
needs to be defined. At the method level, all methods within a Synchronized*
class share a highly regular structure: first synchronize on a mutex, then delegate
the call. Yet they still need to be defined individually. Java provides no way to
modularly impose this structure on all methods.

With MJ, however, we can remove such dependency and redundancy, with a
single MJ class:?

public class SynchronizeMe<interface X> implements X {
X x;
Object mutex;
public SynchronizeMe(X x) { this.x = x; mutex = this; }

//For each non-void method in X, declare the following:
<R,A*>[m] for(public R m(A) : X.methods)
public R m (A a) { synchronized(mutex) { return x.m(a); } }

// Similarly for each void-returning method in X
<Ax>[m] for(public void m(A) : X.methods)
public void m(A a) { sychronized(mutex) { x.m(a); } }

SynchronizeMe decouples the synchronization feature from the interfaces
needing such a feature. Its definition adapts effortlessly to the interfaces it wraps.
There is no need to modify SynchronizeMe when the underlying wrapped inter-
face changes. SynchronizeMe can be instantiated with any interface to provide a
synchronized implementation of that interface, thus replacing all Synchronizedx
wrapper classes. Additionally, SynchronizedMe removes method-level redundancy
using a static iteration block to impose the same structure on all methods.

The full version of the above MJ class consists of less than 50 lines of code, re-
placing more than 600 lines of code in the JCF. Similar simplifications can be ob-
tained for other nested classes in java.util.Collections, which account in total
for some 2000 lines of code in the original JCF implementation: UnmodifiableSet,
UnmodifiableList, UnmodifiableMap, etc. are replaced by a single morphed class,
and the same is done for CheckedSet, CheckedList, CheckedMap, etc.

While adding logging or synchronization functionality is doable with AOP
tools such as AspectJ, MJ allows the “morphing” of a wrapper class in much

2 This example implementation uses this as the mutex. A more flexible implemen-
tation could provide a constructor that allows programmers to choose their own
mutex. In fact, this is the strategy adopted in the JCF.



more interesting ways. For example, one can declare a MJ class MakeLists<C>
such that, for each single-argument method of its type parameter C, MakeLists<C>
has a method of the same name, but takes a list of the original argument type,
invokes the original method on each element of the list, and returns a list of the
original method’s return values:

class MakeLists<C> {
C c; // wrapped object.
... // constructor initializing c.

<R,A>[m] for(R m (A) : C.methods)

List<R> m (List<A> la) {
ArrayList<R> rlist = new ArrayList<R>();
if ( la != null )

for ( A a: la) { rlist.add(c.m(a)); }

return rlist;

}

}

This transformation is not expressible using AspectJ. Consider how this func-
tionality can be implemented using plain Java: a MakeListsSomeType class would
have to be declared for every SomeType that we want to have this extension for.
Additionally, if the structure of SomeType changes, e.g., a new single-argument
method is added, or an existing method changes its argument or return types,
MakeListsSomeType would need to be modified to reflect those changes, as well.
In contrast, the MJ generic class MakeLists<C> works for any class ¢ without ad-
vanced planning of which types this extension can be added to. It also morphs
with the structure of each C, without further programmer intervention.

3 Modular Type Checking

For an example of modular type checking, consider the following “buggy” class:

class CallWithMax<class X> extends X {
<Y>[meth]for(public int meth (Y) : X.methods)
int meth(Y al, Y a2) {
if (al.compareTo(a2) > 0) return super.meth(al);
else return super.meth(a2);
}
}

The intent is that class CallWithMax<C>, for some C, imitates the interface
of ¢ for all single-argument methods that return int, yet adds an extra formal
parameter to each method. The corresponding method of C is then called with
the greater of the two arguments passed to CallWithMax<C>. It is easy to define,
use, and deploy such a generic transformation without realizing that it is not
always valid: not all types Y will support the compareTo method. MJ detects
such errors when compiling the above code, independently of instantiation. In



this case, the fix is to strengthen the pattern with the constraint <Y extends
Comparable<Y>>:

<Y extends Comparable<Y>>[meth]for(public int meth (Y) : X.methods)

Additionally, the above code has an even more insidious error. The generated
methods in CallWithMax<C> are not guaranteed to correctly override the methods
in its superclass, C. For instance, if C contains two methods, int foo(int) and
String foo(int,int), then the latter will be improperly overridden by the gener-
ated method int foo(int,int) in CallWithMax<C> (which has the same argument
types but an incompatible return type). MJ statically catches this error.

4 A Comparison to AOP

Morphing can be used to address some of the same issues as AOP. To be sure,
morphing only relates to a small but central part of AOP functionality: as-
pect advice of structural program features, such as method before-, after-, and
around-advice. Particularly, the logging and synchronization examples shown in
previous sections are frequent use cases for AOP languages. Thus, it is worth
delineating the similarities and distinct differences between morphing and AOP.
We next compare MJ, the only reference morphing language, to AspectJ [8], a
representative AOP tool for Java.

4.1 How Functionality is Added

Both MJ and AspectJ allow functionalities that cross-cut multiple class defini-
tions to be defined in a modular way. For example, the method logging func-
tionality can be defined in one MJ class, MethodLogger. However, the way such
functionalities are added into a base class definition is one of the main differ-
ences between MJ and AspectJ. With MJ, cross-cutting functionality is added
“into” a base class through explicit parameterization of the morphing class.
The new functionality only exists in the parameterized morphing class, whereas
the definition of the base class itself does not change. For example, parame-
terized morphing class MethodLogger<java.io.File> has the functionality that
all int-returning methods are logged. However, the definition of java.io.File
itself remains unchanged. In AspectJ, an aspect definition states the classes a
functionality should be added to.? In this way, the new functionality is weaved
with the code of the original class. The program cannot simultaneously use the
separate notions of “original class” and “class with the cross-cutting function-
ality”. One way to view the semantics of AspectJ is as changing the original
class’s definition. For instance, given an AspectJ aspect that adds logging code
to each int-returning method of java.io.File, the class java.io.File itself can
be thought of as changed after aspect application. Indeed this also happens to
be the way current AspectJ compilers implement the semantics of weaving.

3 In the case of generic aspects in AspectJ 5, the affected classes can be specified
through parameterization of the aspect.



We view explicit parameterization in MJ as an important feature for two
reasons. First, the ability to leave the original class definition untouched is an
important one. For example, a programmer should be able to use both syn-
chronized and unsynchronized versions of a data structure in the same program,
depending on his needs. This is indeed the case with the MJ class SynchronizeMe,
shown in Section 2. With AspectJ, however, the programmer must choose one
or the other. AOP purists may hold the view that cross-cutting functionality
enhancements, by definition, should be applied to all classes that need them.
But as shown through the synchronization example, this is a very rigid require-
ment. Furthermore, if indeed all instantiations of a class should have a particu-
lar cross-cutting functionality, it should be possible to extend MJ with a global
search-and-replace tool, replacing all instances of a class with the explicitly pa-
rameterized version of a morphing class. This is part of future work, however.
Our current research focuses on the fundamental core of morphing, and we ex-
pect that usability enhancements will come later.

Secondly, explicit parameterization provides a way to clearly document and
control the semantics of a program. This is particularly true when multiple,
separately-defined functionality enhancements need to be added to a class. One
of the much researched topics in AOP is aspect interaction. When one defines
an aspect in AspectJ, there is no good way to specify the order of its application
relative to all other aspects, some of which may be unknown to the aspect de-
veloper. Furthermore, an addition of another aspect unknown to the developer
can change the program semantics in unexpected ways. This is an undesirable
characteristic in terms of modularity. MJ, on the other hand, allows explicit con-
trol of functionality addition through instantiation order. The type-instantiation
order gives a clear meaning as to where and how functionality is added.

4.2 Modular Type Safety and Trade-offs in Expressiveness

The other main difference between MJ and AspectJ is MJ’s guarantee of modular
type safety. In order to make such guarantees, we limited our attention to some
specific features instead of adding maximum expressiveness to the language. Pat-
tern matching in MJ is simple and high level by design. A programmer can only
inspect classes at the level of method and field signatures: MJ pattern matching
applies to reflection-level structural elements of a type. In contrast, AspectJ al-
lows a programmer to match on a program’s dynamic execution characteristics,
using keywords such as cflow (for control flow) and cflowbelow in pointcuts.

Though MJ limits its pattern matching to the type signature level, it does al-
low matching using subtype-based semantic conditions, in contrast to the purely
syntactic matching of signatures Aspect] offers. For instance, using pattern-
matching type variables, MJ allows one to express a pattern that matches all
methods that return some subtype of java.lang.Comparable. This is a pattern
not expressible through AspectJ. The combination of pattern matching and the
static for construct in MJ provides a controlled but useful kind of programma-
bility in defining where a certain functionality should be introduced.



Although we make comparisions only to AspectJ, the arguments in this sec-
tion generalize to other AOP tools, as well. AspectJ is representative in the way
it applies aspects, and is perhaps the most expressive aspect language today.

5 Future Work: When Plain Morphing Isn’t Enough

We have demonstrated through examples that morphing with MJ is particularly
useful for defining classes whose structure must mirror the structure of another
class or interface. However, there are some useful cases that MJ, with just pattern
matching and static iteration, cannot express in a modularly type safe way. For
example, it is often the case that each field in a class has its own getter and
setter methods. These getter and setter methods must be manually defined by
the developer. This seems to be the perfect use-case for morphing. We ought to
be able to define a morphing class that defines a getter and a setter method for
each field in its type parameter:

public class AddGetterSetter<class C> extends C {
<F>[f] for( F f : C.fields )
public F get#f () { return f; }

<F>[f] for( F f : C.fields )
public void set#f ( F newF ) { f = newF; }

Note that AddGetterSetter uses the MJ language construct #, which con-
catenates a constant prefix to a pattern matching name variable. For each field
SomeField in C, AddGetterSetter<C> declares a getter method, getSomeField, and
a setter method, setSomeField. However, this class is not modularly type safe.
We cannot establish that the names of the methods being declared, getSomeField
and setSomeField, whatever SomeField may be, do not conflict with methods in
the superclass C. For example, AddGetterSetter<Foo> would not be a well-typed
class if Foo is defined as follows:

public class Foo {
int up;

public int setup ( int i ) { ... }
}

AddGetterSetter<Foo> contains the method void setup(int), which incor-
rectly overrides the method int setup(int) in its superclass Foo: setup in
AddGetterSetter<Foo> has the same argument type as setup in Foo, but a non-
covariant return type.

One possible way to express such functionality while keeping modular type
safety is to put an additional condition on each element in the static iteration.
We need to be able to express that we only want to iterate over those fields £
of ¢ for which a set#f (or get#f) method does not already exist in C itself. We



are currently considering an extension to the pattern language. For example, we
could change the static iteration block defining the setter method to:

<F>[f] for( F f : C.fields;
no set#f(F) : C.methods )
public void set#f ( F newF ) { f = newF; }

Note the extra clause: no set#f(F) : C.methods. This clause serves as the
extra conditional needed to ensure that no conflicting method already exists in
C.

This addition to MJ’s pattern matching language might seem simple and
innocuous at first, but the combination of iteration along with conditionals on
types and their structures can easily yield undecidable type systems. We must
take care to restrict the conditionals so that our type checker can still provide
useful feedback to the programmers. Striking this balance between the need for
this additional expressiveness and the tractability of the type system is our future
focus.

6 Conclusion

Overall, we consider MJ and the idea of morphing to be a significant step forward
in supporting software evolution. Morphing can be viewed as an aspect-oriented
technique, allowing the extension and adaptation of existing components, and
enabling a single enhancement to affect multiple code sites (e.g., all methods
of a class, regardless of name). Yet morphing can perhaps be seen as a bridge
between AOP and generic programming. Morphing allows expressing classes
whose structure evolve consistently with the structures they mirror. Morphing
strives for smooth integration in the programming language, all the way down to
modular type checking. Thus, reasoning about morphed classes is possible, unlike
reasoning about and type checking of generic aspects, which can typically only be
done after their application to a specific code base. Morphing does not introduce
functionality to unsuspecting code. Instead, it ensures that any extension is
under the full control of the programmer. The result of morphing is a new class
or interface, which the programmer is free to integrate in the application at
will. We thus view morphing as an exciting new direction in supporting software
evolution.
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