Mixin Layers: An Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs

Yanns Smaragiakis Don Batory
College of Computing Department of Computer Sciences
Georgia Institute of Technology The University of Texas at Austin
Atlanta, GA 30332 Austin, Texas 78712
yannis@cc.gatech.edu batory@cs.utexas.edu

Abstract

A “refinement” is a functionality addition to a software project that can affect multiple dispersed imple-
mentation entities (functions, classes, etc.). In this paper, we examine large-scale refinements in terms of a
fundamental object-oriented technique called collaboration-based design. We explain how collaborations
can be expressed in existing programming languages or be supported with new language constructs (which
we have implemented as extensions to the Java language). We present a specific expression of large-scale
refinements calledhixin layers and demonstrate how it overcomes the scalability difficulties that plagued
prior work. We also show how we used mixin layers as the primary implementation technique for building

an extensible Java compiler, JTS.

Content Indicators

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures; D.2.13 [Soft-
ware Engineering]: Reusable Software; D.1.5 [Programming Techniques]: Object-Oriented Programming;
D.3.3 [Programming Languages]: Language Constructs and Features

General Terms Design; Languages

Additional Key Words and Phrases product-line architectures, collaboration-based design, component-
based software

1 Introduction

The history of software design and programming languages intimately evolves around the concept of mod-
ularity. Modules encapsulate primitive functionality or services that, ideally, can be reused in the construc-
tion of many applications. The granularity of modules has evolved from small scale, to medium scale, and
now to large-scale: that is from functions, to abstract data types or classes (i.e., suites of interrelated func-
tions), and now more commonly to components or packages (i.e., suites of interrelated classes). The bene-
fits of increased module scale is that of economics—applications are easier to build from fewer and larger
parts—and design simplicity—applications are easier to comprehend when modules encapsulate, and thus
hide, irrelevant implementation details.

However, the benefits of scaled modularity are driven by reuse. The more a module is reused, the more
valuable it becomes. But there is an ironic twist: the larger the module, the more specific its use and func-
tionality, and this, in turn, reduces the likelihood that other applications will need its exact capabilities. In
other words, it seems that reuse opportunities become fewer as a module becomes larger: scaling modular-
ity seems to defeat the purpose of reuse, and this is exactly the opposite of what we want [Big94].

The solution to this problem lies in a very different concept of modularity, where neither entire functions,
entire classes, or entire packages are the answer. Instead, the unit of modularity that we seek encapsulates
fragmentsof multiple classes, which in turn encapsulategymentsof multiple functions. An extensive

body of research has shown that such units are indeed the reusable building blocks of large-scale modules:
composing sets of class fragments yields a package of fully-formed classes. This recognition has become
particularly clear in the area of software product-lines, where the goal is to construct large families of
related applications from primitive and reusable components. The components that made this possible
encapsulated fragments of classes.

We use the termefinement(also in [BG98]) for any such unit of functionality in a software system. A
refinement is a functionality addition to a program that introduces a conceptually new service, capability,
or feature, and may affect multiple implementation entities. Various researchers have offered different
descriptions, implementations, and names to fairly analogous concepts over the years, including layers

[BBG*88], collaborations [RAB92], subjects [OH92, TOHS99] and aspects [KI9T]. Parnas’s classic
work [Par79] has offered much of the software engineering context for these appfoaches.

We believe that a prominent characteristic of successful refinement technologies is scalability. Implement-
ing microscopic refinements (i.e., refinements that dealt with code fragments at the expression level) has
not produced great software engineering advances in the past and is unlikely to do so in the future. The
novelty of current research strikes at the core problem—that of scaling the unit of refinement from a micro-
scopic scale to large scale, where a single refinement alters multiple classes of an application. A large-scale
refinement exhibits “cross-cutting™—multiple classes must be updated simultaneously and consistently.
Thus, composing a few large scale refinements yields an entire application. This means that the inverse
relationship between module size and reusability that has crippled conventional concepts no longer
applies, and a fresh look at software modularity has become a topic of wide-spread interest.

This paper is about modular implementations of large-scale refinements and the development of families of
related applications through refinement. In particular, we show that a fundamental object-oriented concept,
calledcollaboration-based designis in fact how large-scale refinements are expressed in object-oriented
models. We begin by explaining the core ideas of collaboration-based design and how they are related to
large-scale refinements. We then show how these ideas can be expressed in existing programming lan-
guages, or supported with new language constructs (which we have implemented as extensions of the Java
language). In particular, we introduce a specific expression of large-scale refinementsncaledyers

and demonstrate how it extends and overcomes problems of prior work on the refinement-based designs of
VanHilst and Notkin [VN96a-c, Van97] and application frameworks [JF88]. Mixin layers implementations
are discussed, but our paper intends to convince the reader thahooklimplement programs using

mixin layers, not that oniss merely able talo so. Better implementations than the ones we propose may be
possible, or languages other than the ones we examine may offer more complete support for mixin layers.
In either case, this would be independent from our main argument which is one of desirability of applica-
tion development through mixin layers. As a practical validation, we show how we used mixin layers as the
primary implementation technique in a medium-size project: the JTS tool suite for implementing domain-

1. The definition of “refinement” that seems closest to our intended meaning is “the act of making improvement by introducing
subtleties or distinctions” (Merriam-Webster's Dictionary). Formal approaches to programming use the term “refinement” to
denote the elaboration of a program by adding more implementation detail until a fully concrete implementation is reached.
The set of behaviors (i.e., the legal variable assignments) of a “refined” program is a subset of the behaviors of the original
“unrefined” program. This appears to be different from our use of the term. Our “refinements” follow the dictionary definition
by adding “subtleties or distinctions” at tlieesignlevel. At the implementation level, however, a refinement can yield dra-
matic changes: both the exported functionality (semantics of operations) and the exported interface (signatures of operations)
may change. Thus, unlike the use of “refinement” in formal approaches to programming, the set of allowed behaviors of our
“refined” program might not be a subset of the behaviors of the “unrefined” program.

specific languages. Our experience shows that the mechanism is versatile and can handle refinements of
substantial size.

2 Background: Collaboration Based Designs

Collaboration-basear role-baseddesigns have been the subject of many papers [BC89, HHG90, Hol92,
RAB*92, VN96a]. The concept may have originated with Reenskaug, et al. [R2JBut the ideas have
been used in various forms, often without being named (e.qg., [BB{. A good introduction to collabo-

ration-based design can be found in the presentation of the OORAM approacA9RIAR detailed treat-
ment of collaboration-based designs, together with a discussion of how to derive them from use-case
scenarios [Rum94] can be found in VanHilst's Ph.D. dissertation [Van97].

2.1 Collaborations and Roles

In an object-oriented design, objects are encapsulated entities but are rarely self-sufficient. Although an
object is fully responsible for maintaining the data it encapsulates, it needs to cooperate with other objects
to complete a task. An interesting way to encode object interdependencies is through collaboratans. A
laborationis a set of objects and a protocol (i.e., a set of allowed behaviors) that determines how these
objects interact. The part of an object enforcing the protocol that a collaboration prescribes is called the
object’srole in the collaboration. Objects of an application generally participate in multiple collaborations
simultaneously and, thus, may encode several distinct roles. Each collaboration, in turn, is a collection of
roles, and represents relationships across corresponding objects. Essentially, a role isolates the part of an
object that is relevant to a collaboration from the rest of the object. Different objects can participate in a
collaboration, as long as they support the required roles.

In collaboration-based design, the objective is to express an application as a composition of largely inde-
pendently-definable collaborationgiewed in terms of design modularity, collaboration-based design
acknowledges that a unit of functionality (module) is neither a whole object nor a part of it, but can cross-
cut several different objectdf a collaboration is reasonably independent of other collaborations (i.e., a
good approximation of an ideal module) the benefits are great. First, the collaboration can be reused in a
variety of circumstances where the same functionality is needed, by just mapping its roles to the right
objects. Second, any changes in the encapsulated functionality will only affect the collaboration and will
not propagate throughout the whole application.

In abstract terms, a collaboration is a view of an object-oriented design from the perspective of a single
concern, service, or feature. For instance, a collaboration can be used to express a producer-consumer rela-
tionship between two communicating objects. Clearly, this collaboration prescribes roles for (at least) two
objects and there is a well-defined “protocol” for their interactions. Interestingly, the same collaboration
could be instantiated more than once in a single object-oriented design, with the same objects playing dif-
ferent roles in every instantiation. In the example of the producer-consumer collaboration, a single object
could be both a producer (from the perspective of one collaboration) and a consumer (from the perspective
of another).

Figure 1 depicts the overlay of objects and collaborations in an abstract application involving three differ-
ent objects QA, OB, OC), each supporting multiple roles. Obje@B, for example, encapsulates four dis-
tinct roles:B1, B2, B3, andB4. Four different collaborationscy, c2, ¢3, c¢4) capture distinct aspects of the
application’s functionality. Each collaboration prescribes roles to certain objects. For example, collabora-
tion c2 contains two distinct rolegy2 ands2, which are assumed by distinct objects (nan@fyandOB).

An object does not need to play a role in every collaboration—for instexdees not affect obje@C.

Object Classes

Object OA Object OB Object OC

w (Collaboration | gy o1 Role B1 Role C1
9 cl
S .
< Collaboration | goe A2 Role B2
5 c2
= -
5 (Collaboratlon Role B3 Role C3 >
QO
© c3
8 (Collaborat

(Cl(l) aboration Role A4 Role B4 Role C4 >

Figure 1 : Example collaboration decomposition. Ovals represent collaborations, rectan-
gles represent objects, their intersections represent roles.

Collaborations can be composed dynamically at application run-time or statically at application compile-
time. In this paper, we examine the static composition of collaborations, where roles that are played by an
object are uniquely determined by its class. For instance, in Figure 1, all three objects must belong to dif-
ferent classes (since they all support different sets of roles). The work described in this paper can be gener-
alized to dynamic compositions of collaborations.

From a broader perspective, a collaboration is a large-scale refinement. Again, a refinement elaborates a
program to extend its functionality or to add implementation details. A refinement is large scale if it modi-
fies multiple classes of an application. For example, when collaboradien(statically) added to the pro-

gram of Figure 1, the classes for obje€i8, OB, andOC are updated consistently and simultaneously so

that the “feature” or “service” defined w4 is appropriately implemented. Thus, composing collaborations

is an example of refinement, where a simple program is progressively elaborated into a more complex one.
Collaborations are large-scale and reusable refinements—they can be used in the construction of many pro-
grams.

2.2 An Example

As a running example that illustrates important points of our discussion, we consider a graph traversal
application that was examined initially by Holland [Hol92] and subsequently by VanHilst and Notkin
[VN96a]. Doing so affords not only a historical perspective on the development of collaboration-based
designs, but also a perspective on the contribution of this work. The application defines three different
operations (algorithms) on an undirected graph, all based on depth-first traWersak Numberingrum-

bers all nodes in the graph in depth-first ordéycle Checkingsxamines whether the graph is cyclic, and
Connected Regiordassifies graph nodes into connected graph regions. That is, a client of this application
can instantiate a graph and separately invoke algorithms that perform vertex numbering, cycle checking,
and/or find connected regions on a graph. The application itself has three distinct dasgasVertex
andWorkspaceTheGraphclass describes a container of nodes with the usual graph properties. Each node
is an instance of th¥ertexclass. Finally, th&Vorkspaceslass includes the application part that is specific

to each graph operation. For example, Werkspaceobject for aVertex Numberingperation holds the

value of the last number assigned to a vertex as well as the methods to update this number.

Object Classes

Graph Vertex Workspace
Undirected | graphundirected VertexWith
@‘ Graph Adjacencies
o)
> .
& (Depth First) o ohoFT VertexDFT
> Traversal
8| ([Vert
-8 ertex . VertexNumber WorkspaceNumber
© Numbering
2
© (Cyde _ GraphCycle VertexCycle WorkspaceCycle
o Checking
Ol
Con_nected GraphConnected ertexConnected Woprkspace
Region Connected

Figure 2 : Collaboration decomposition of the example application domain: A depth-first
traversal of an undirected graph is specialized to yield three different graph operations.
Ovals represent collaborations, rectangles represent classes.

In decomposing this application into collaborations, we need to capture distinct aspects as separate collab-
orations. A decomposition of this kind is straightforward and results in five distinct collaborations.

One collaborationyndirected Graph encapsulates properties of an undirected graph. This is clearly an
independent aspect of the application—the problem could very well be defined for directed graphs, for
trees, etc.

Another collaboration@epth First Traversgl encapsulates the specifics of depth-first traversals and pro-
vides a clean interface for extending traversals. That is, at appropriate moments during a traversal (the first
time a node is visited, when an edge is followed, and when a subtree rooted at a node is completely pro-
cessed) control is transferred to specialization methods that can obtain information from the traversal col-
laboration and supply information to it. Consider ttiertex Numberingperation as a refinement of a
depth-first traversal. Numbering is realized by specializing the action when visiting a node for the first time
during a traversal. The action assigns a number to the node and increases the count of visited nodes.

Using this approach, each of the three graph operations can be seen as a refinement of a depth-first tra-
versal and each can be expressed by a single collaboration. Figure 2 is reproduced from [VN96a] and pre-
sents the collaborations and classes of our example application domain. The intersection of a class and a
collaboration in Figure 2 represents the role prescribed for that class by the collaboration. A role encodes
the part of an object that is specific to a collaboration. For instance, the rol@raifod object in the Undi-

rected Graph collaboration supports storing and retrieving a set of vertices. The role of the same object in
the “Depth First Traversdlcollaboration implements a part of the depth-first traversal algorithm. (In par-
ticular, it contains a method that initially marks all vertices of a gnaptivisitedand then calls the method

for depth-first traversal on each graph vertex object).

The goal of a collaboration-based design is to encapsulate within a collaboration all dependencies between
classes that are specific to a particular service or feature. In this way, collaborations themselves have no
outside dependencies and can be reused in a variety of circumstancetlntietted Graphcollabora-
tion, for instance, encodes the properties of an undirected graph (pertaining @raph and Vertex

classes, as well as the interactions between objects of the two). Thus, it can be reused in any application
that deals with undirected graphs. Ideally, if we could define an “interface” to a collaboration, we should
also be able to easily replace one collaboration with another that exports the same interface. For instance, it
would be straightforward to replace theridirected Graphcollaboration with one representing a directed
graph, assuming that both collaborations exported the same interface.

Of course, simple interface conformance does not guarantee composition correctness—the application
writer must ensure that the algorithms used (for example, the depth-first traversal) are still applicable after
the change. The algorithms presented by Holland [Hol92] for this example are, in fact, general enough to
be applicable to a directed graph. If, however, a more efficient, specialized-for-undirected-graphs algo-
rithm was used (as is, for instance, possible for @yele Checkingperation) the change would yield
incorrect results. [Sma99, SB98b, BG98] discuss in detail the issue of ensuring that collaborations are
actually interchangeable.

Although we have focussed on a single application that supports all three graph operations, it is easy to see
how variants of this application could be created (e.g., by omitting some operations or adding new opera-
tions), where each variant would be described by the use of different collaborations. This very fact makes
collaboration-based designs ideal for describing product-line architectures, that is, designs for families of
related applications. As we will see, collaborations define the building blocks for application families,
compositions of these building blocks yields different product-line members.

3 Implementing Collaboration-Based Designs with Mixin Layers

3.1 Mixin Classes and Mixin Layers

A refinement of an object-oriented class is encapsulated by a subclass: a subclass can add new methods
and data members, as well as override existing methods of its superclass. Thus, inheritance is a built-in
mechanism for statically refining classes in object-oriented languages. The challenge is to scale inheritance
from refining individual classes to expressing the large-scale refinements of collaboration-based designs.

A solution is to build on an existing object-oriented construct calletan. Mixins are similar to classes

but with some added flexibility, as described shortly. Unfortunately, mixins alone are not sufficient to
express large-scale refinements—they suffer from only being able to refine a single class at a time and not
a collection of cooperating classes. To address this, we intradide-layers a scaled-up form of mixins

that can contain multiple smaller mixins.

3.1.1 Introduction to Mixins

The termmixin class(or just “mixin”) has been overloaded to mean several specific programming tech-
niques and a general mechanism that they all approximate. Mixins were originally explored in the context

of the Lisp language with object-systems like Flavors [M0o086] and CLOS [KRB91]. They were defined as
classes that allow their superclass to be determinelthbgrizationof multiple inheritance. In C++, the

term has been used to describe classes in a particular (multiple) inheritance arrangement: as superclasses of
a single class that themselves have a comwidunal base clasgsee [Str97], p.402). Both of these mecha-

nisms are approximations of a general concept described by Bracha and Cook [BC90], and here we use
“mixin” in this general sense.

The main idea of mixins is simple: in object-oriented languages, a superclass can be defined without spec-
ifying its subclasses. This property is not, however, symmetric: when a subclass is defined, it must have a
specific superclass. Mixins (also commonly knowrabstract subclassg¢8C90]) represent a mechanism

for specifying classes that eventually inherit from a superclass. This superclass, however, is not specified at

the site of the mixin’s definition. Thus a single mixin can be instantiated with different superclasses yield-
ing widely varying classes. This property makes them appropriate for defining uniform incremental exten-
sions for a multitude of classes. When a mixin is instantiated with one of these classes as a superclass, it
produces a class incremented with the additional behavior.

Mixins can be implemented using parameterized inheritance: it is a class whose superclass is specified by a
parameter. Using C++ syntax we can write a mixin as:

template <class Super> class Mixin : public Super {
... [* mixin body */

}s

Mixins are flexible and can be applied in many circumstances without modification. To give an example,
consider a mixin implementingperation countingor a graph. Operation counting means keeping track of
how many nodes and edges have been visited during the execution of a graph algorithm. (This simple
example is one of the non-algorithmic refinements to algorithm functionality discussed in [WeiWeb]). This

mixin could have the form:

template <class Graph> class Counting : public Graph {
int nodes_visited, edges_visited;

public:
Counting() : Graph() { nodes_visited = edges_visited = 0; }

node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}

edge succ_edge (edge e) {
edges_visited++;
return Graph::succ_edge(e);

}

/I example method that displays the cost of an algorithm in
// terms of nodes visited and edges traversed
void report_cost () {
cout << “The algorithm visited " << nodes_visited <<
“nodes and traversed " << edges_visited <<
“edges\n”;

}

... Il other methods using this information may exist

}s

By expressing operation counting as a mixin we ensure that it is applicable to many classes that have the
same interface (i.e., many different kinds of graphs). Clearly, the implicit assumption is that classes, like
Dgraph andUgraph , have been designed so that they export similar interfaces. By standardizing certain
aspects of the design, like the method interfaces for different kinds of graphs, we gain the ability to create

mixin classes that can be reused in different occasions. can, for instance, use two different composi-
tions:

2. We use C++ syntax for most of the examples of this section, in the belief that concrete syntax clarifies, rather than obscures, our
ideas. To facilitate readers with limited C++ expertise, we avoid several cryptic idioms or shorthands (for instance, constructor
initializer lists are replaced by assignments, we do not usesttiiet keyword to declare classes, etc.). A convention fol-
lowed in our code fragments is that class declarations and their syntactic delimiters are highlighted. This enhances readability
in later sections, where classes are nested.

typedef Counting < Ugraph > CountedUgraph ;
and

typedef Counting < Dgraph > CountedDgraph ;
to define a counted undirected graph type and a counted directed graph type. (We omit parameters to the
graph classes for simplicity.) Note that the behavior of the composition is exactly what one would expect:
any methods not affecting the counting process are exported (inherited from the graph classes). The meth-
ods that do need to increase the counts are “wrapped” in the mixin.

3.1.2 Mixin Layers

To implement entire collaborations as components we need to use mixins that encapsulate other mixins.
We call the encapsulated mixin clasgmser mixins and the mixin that encapsulates themdliger mixin

Inner mixins can be inherited, just like any member variables or methods of a class. An outer mixin is
called amixin layer whenthe parameter (superclass) of the outer mixin encapsulates all parameters

(superclasses) of inner mixifisThis is illustrated in Figure 3ThisMixinLayer iS a mixin that refines
(through inheritance3uperMixinLayer . SuperMixinLayer — encapsulates three classeigtClass , Sec-
ondClass , andThirdClass . ThisMixinLayer also encapsulates three inner classes. Two of them are mix-
ins that refine the corresponding classesupérMixinLayer , while the third is an entirely new class.

Legend SuperMixinLayer

.“outer \. inner
‘classes . classes

o . ThisMixinLayer
’ T - <
inheri inheri SOOI R
inheritance lnherltance) ThirdClass FourthClass . :
among outer among Iinnef (inherited) - .

classes classes

Figure 3 : Mixin layers schematically.

Note that inheritance works at two different levels. First, a layer can inherit inner classes from the layer
above it (for instancethirdClass in Figure 3). Second, the inner mixins inherit member variables, meth-
ods, or other classes from their superclass.

3.1.3 Mixin Layers in Various OO Languages

The mixin layer concept is quite general and is not tied to any particular language idiom. Many flavors of
the concept, however, can be expressed via specific programming language idioms: as stand-alone lan-
guage constructs, as a combination of C++ nested classes and parameterized inheritance, as a combination
of CLOS class-metaobjects and mixins, etc. We examine some of these different realizations next. The

3. Stated another way, a mixin defines a refinement of a class, but this refinement is not meanieggryfoossible class. Stan-
dardized interfaces is a way to type or restrict the set of classes that a mixin can meaningfully refine. C++ syntax, in this
regard, is unsatisfactory because C++ templates have untyped parameters. Languages like Pizza [OW97] or GJ [BOSW98]
offer a better mechanism, where class parameters are typed by the interfaces that they implement. Unfortunately, Pizza and GJ
do not support parameterized inheritance.

4. Inner mixins can themselves be mixin layers.

introduction of technical detail is necessary at this point as it helps us demonstrate concretely, in Section
3.2, the advantages of mixin layers for implementing collaboration-based designs.

C++. We would like to support mixin layers in C++ using the same language mechanisms as those used for
mixin classes. To do this, we can standardize the names used for inner class implementations (make them
the same for all layers). This yields an elegant form of mixin layers that can be expressed using common
C++ features. For instance, using C++ parameterized inheritance and nested classes, we can express
ThisMixinLayer as a mixin layer (see again Figure 3) with two inner miximas(Class and
SecondClass) and one additional classo(rthClass):

template <class LayerSuper>

class ThisMixinLayer : public LayerSuper {
public:
class FirstClass : public LayerSuper::FirstClass {.. };
class SecondClass : public LayerSuper::SecondClass { .. };
class FourthClass { };
s (1)

The code fragment (1) represents the form of mixin layers that we use in the examples of thisNetgion

that specifying a parameter for the outermost mixin automatically determines the parameters of all inner
mixins. Composing mixin layers to form concrete classes is now as simple as composing mixin classes. If
we have four mixin layersa 4yerl , Layer2 , Layer3 , Layer4), we can compose them as:

Layerd < Layer3 < Layer2 < Layer 1>>>

where «..> " is the C++ operator for template instantiation. Note thater: has to be a concrete class

(i.e., not a mixin class). Alternatively we can have a class with empty inner classes that is the root of all
compositions. (A third alternative is to usdxgointconstruction and instantiate the topmost layer with the
result of the entire composition! This pattern has several desirable properties and is analyzed further in
Chapter 3 of [Sma99].)

In code fragment (1) we mapped the main elements of the mixin layer definition to specific implementation
technigues. We used nested classes to implement class encapsulation. We also used parameterized inherit-
ance to implement mixins. However, there are very different ways of encoding the same concept in other
languages.

CLOS (and other reflective languages)We can encode mixin layers in CLOS [KRB91] (and other reflective
systems) by simulating their main elements using reflection (classes as first-class entities). Due to lack of
space, we elide the implementation specifics. A discussion can be found in [SB98b] and [Sma99]. CLOS
mixin layers are not semantically equivalent to C++ mixin layers (for instance, there is no default class
data hiding: class members are by default accessible from other code in CLOS). Nevertheless, the two ver-
sions of mixin layers are just different flavors of the same idea.

Our ideas are applicable to other reflective languages. Smalltalk, in particular, has been a traditional test-

bed for mixins, both for researchers (e.g., [BG96, Mez97, S3]) and for practitioners [Mon96]. A
straightforward (but awkward) way to implement mixins in Smalltalk iclass-functorsthat is, mixins
can be functions that take a superclass as a parameter and return a new subclass.

Java. The Java language is an obvious next candidate for mixin layers. Java has no support for mixins and
it is unlikely that the core language will include mixins in the near future. As will be described in Section
4, we extended the Java language with constructs that capture mixins and mixin layers explicitly. In this

effort we used our JTS set of tools [BLS98] for creating compilers for domain-specific languages. The sys-
tem supports mixins and mixin layers through parameterized inheritance and class nesting, in much the

same way as in C+*Additionally, the fundamental building blocks of JTS itself were expressed as mixin
layers, resulting in an elegant bootstrapped implementation. More on JTS in Section 4.

Adding mixins to Java is also the topic of other active research [AFM97, FKF98]. The work of [FKF98]
presented a semantics for mixins in Java. This is particularly interesting from a theoretical standpoint as it
addresses issues of mixin integration in a type-safe framework. As we saw, mixins can be expressed in
C++ using parameterized inheritance. There have been several recent proposals for adding parameteriza-
tion/genericity to Java [AFM97, OW97, BOSW98, MBL97, Tho97], but only the first [AFM97] supports
parameterized inheritance and, hence, can express mixin layers.

It is interesting to examine the technical issues involved in supporting mixins in Java genericity mecha-
nisms. Three of these mechanisms [OW97, BOSW98, Tho97] are basdtbomgeneousmodel of trans-
formation: the same code is used for different instantiations of generics. This is not applicable in the case
of parameterized inheritance—different instantiations of mixins are not subclasses of the same class (see
[AFM97] for more details). Additionally, there may be conceptual difficulties in adding parameterized
inheritance capabilities: the genericity approach of [Tho97] is based on virtual types. Parameterized inher-
itance can be approximated with virtual types by employiitgual superclassefMM89], but this is not

part of the design of [Tho97].

The approaches of Myers et al. [MBL97] and Agesen et al. [AFM97] are conceptually similar from a lan-
guage design standpoint. Even though parameterized implementations do not directly correspond to types
in the language (in the terminology of [CW85] they correspondyfme operatory parameters can be
explicitly constrained. This approach, combined withederogeneoumodel of transformation (i.e., one

where different instantiations of generics yield separate entities) is easily amenable to adding parameter-
ized inheritance capabilities, as was demonstrated in [AFM97].

3.2 Implementing Collaboration-Based Designs

Given the mixin layer concept, we can now express collaboration-based designs directly at the implemen-
tation level. We show how mixin layers can be used to perform the task and examine how it compares to
two previous approaches. One is the straightforward implementation technique of application frameworks
[JF88] using just objects and inheritance. The other is the technique of VanHilst and Notkin that employs
C++ mixins to express individual roles.

3.2.1 Using Mixin Layers

A collaboration can be expressed by a mixin layer. The roles played by different objects are expressed as
nested classes inside the mixin layer. The general pattern is:

5. The Java 1.1 additions to the language [Jav97b] support nested classes and interfaces (actually both “nested” classes as in C++
andmemberclasses—where nesting has access control implications). Nested classes can be inherited just like any other mem-
bers of a class.

10

template <class CollabSuper>

class CollabThis : public CollabSuper {
public:
class FirstRole : public CollabSuper::FirstRole {.. };
class SecondRole : public CollabSuper::SecondRole { ... }s
class ThirdRole : public CollabSuper::ThirdRole { ... }s
/l more roles
b 2)

Again, mixin layers are composed by instantiating a layer with another as its parameter. This produces two
classes that are linked as a parent-child pair in the inheritance hierarchy. For four mixin ¢tayess, ,

Collab2 , Collab3 , FinalCollab of the above form, we can define a claghat expresses the final product

of the composition as:

typedef Collabl < Collab2 < Collab3 < FinalCollab > > > T;

or (alternatively):

class T : public Collabl < Collab2 < Collab3 < FinalCollab > > > { I* empty body */ };

In this paper, we consider these two forms to be equiv%lent.

The individual classes that the original design describes are members (nested classes) of the above compo-
nents. ThusT::FirstRole defines the application classstRole , etc. Note that classes that do not par-
ticipate in a certain collaboration can be inherited from collaborations above (we subsequently use the term
“collaboration” for the mixin layer representing a collaboration when no confusion can result). Thus, class
T::FirstRole is defined even iCollabl (the bottom-most mixin layer in the inheritance hierarchy) pre-
scribes no role for it.

Example.Consider the graph traversal application of Section 2.2. Each collaboration is represented as a
mixin layer. Vertex Numberingfor example, prescribes roles for objects of two different clasgedex
andWorkspacelts implementation has the form:

template <class CollabSuper> class NUMBER public CollabSuper {
public:

class Workspace : public CollabSuper::Workspace {

... Il Workspace role methods

}s

class Vertex : public CollabSuper::Vertex {
... Il Vertex role methods

}s
}; (3

Note how the actual application classes are nested inside the mixin layer. For instance, the roles for the
Vertex and Workspaceclasses of Figure 1 correspond KWMBER::Vertex and NUMBER::Workspace ,
respectively. Since roles are encapsulated, there is no possibility of name conflict. Moreover, we rely on the
standardization of role names. In this example the namv@ispace , Vertex , andGraph are used for roles

in all collaborations. Note how this is used in code fragment (3): Any class generated by this template
defines roles that inherit from class@skspace andvertex in its superclasscollabSuper).

6. There are differences, but these are a consequence of C++ policies and are not important for our discussion (they are discussed
together with other C++ specific issues in [Sma99], Chapter 3).

11

Other collaborations of our Section 2.2 design are similarly represented as mixin layers. Thus, we have a
DFT and aUGRAPHomponent that capture tidepth-First TraversabndUndirected Graptcollaborations
respectively. For instance, methods in thetex class of theDFT mixin layer includevisitDepthFirst

andisvisited (with implementations as suggested by their names). Similarly, methods weilee

class ofUGRAPHNClude addNeighbor , firstNeighbor ~ , and nextNeighbor , essentially implementing a
graph as an adjacency list.

To implement default work methods for the depth-first traversal, we use an extra mixin layer, called
DEFAULTWThe DEFAULTWMIXIN layer provides the methods for tkeeaph andvertex classes that can be
overridden by any graph algorithm (eertex Numberingused in a composition.

template <class CollabSuper> class DEFAULTW public CollabSuper {
public:
class Vertex : public CollabSuper::Vertex {
protected:
bool worklsDone(CollabSuper::Workspace*) {return 0;}
void preWork(CollabSuper::Workspace*) {3
void postWork(CollabSuper::Workspace*) {
void edgeWork(Vertex*, CollabSuper::Workspace*) {}

}s

class Graph : public CollabSuper::Graph {
protected:
void regionWork(Vertex*, CollabSuper::Workspace*) {}
void initWork(CollabSuper::Workspace*) {
bool finishWork(CollabSuper::Workspace*) {return 0;}

3
}s

The introduction oDEFAULTWas a component separate framr) is an implementation detail, borrowed
from the VanHilst and Notkin implementation of this example [VN96a]. Its purpose is to avoid dynamic
binding and enable multiple algorithms to be composed as separate refinements of more tirarcone
ponent. This topic is discussed in detail during the comparison of mixin layers and application frameworks
(Section 3.2.2).

With the collaboration entities of the original design represented as distinct mixin layers, it is easy to pro-
duce an entire application by composing collaborations. In fact, the mixin layers defined can be used to
implement goroduct-line a family of related applications. Different compositions of layers yield different
products (members) of the family. In our example, the building blocks are the undirected graph, depth first
traversal, etc. collaborations. We show the collaborations that are composed to build the vertex numbering
graph application in Figure 4(a). We will soon explain what this composition means but first let us see how
the different classes are related. The final implementation classes are members of the product of the com-
position,NumberC (e.g.,NumberC::Graph is the concrete graph class). Figure 4 shows the mixin layers and
their member classes, which represent roles, as they are actually composed. Each component inherits from
the one above it. That i®FT inherits role-members frorAUMBERwhich inherits frombEFAULTWWhich

inherits fromuGRAPHAL the same timepFT::Graph inherits methods and variables frodtMBER::Graph,

which inherits frombDEFAULTW::Graph, which inherits fromUGRAPH::Graph . This double level of inherit-

ance is what makes the mixin-layer approach so powerful. For instance, even thoumgERIOes not

specify aGraph member, it inherits one fromeEFAULTWThe simplicity that this design affords becomes
apparent in the following sections, when we compare it with alternatives.

12

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC,;

Figure 4(a) : A composition implementing the vertex numbering operation

Classes of participating objects

Graph Vertex Workspace
(UGRAPH | : | : | : D
(DEFAULTW | * | + | * |)
(NUMBER | | | D

7))
(oFT | | | D

Figure 4(b) : Mixin-layers (ovals) and role-members (rectangles inside ovals) in the com-
position. Every component inherits from the one above it. Shaded role-members are those
contained in the collaboration, unshaded are inherited. Arrows show inheritance relation-
ships drawn from subclass to superclass.

The interpretation of the composition in Figure 4 is straightforward. It expresses the development of a ver-
tex numbering application as a series of refinements. One begins witletrPHnixin layer that imple-

ments an undirected graph. Next, default classes and methods that are common to all graph traversal
algorithms are added by the mixin lay®eFAULTWT hen the algorithms and data members that are specific

for vertex numbering are introduced by tReMBERMIxin layer. These algorithms, by themselves, are
insufficient for performing vertex numbering because they rely on graph search algorithms which have yet
to be added. Finally, the graph search algorithms—in this case, depth first search—are grafted on by the
DFT mixin layer thereby completing the specification and implementation of this application.

Thus, every mixin layer exceptGRAPHS implemented in terms of the ones above it. For instanegjs
implemented in terms of methods supplied MymMBERDEFAULTWandUGRAPHAN actual code fragment
from thevisitDepthFirst method implementation iDFT::vertex is the following:

for (v = (Vertex*)firstNeighbor(); v = NULL; v = (Vertex*)nextNeighbor())
{ edgeWork(v, workspace);
v->visitDepthFirst(workspace); } (4)

ThefirstNeighbor ~ , nextNeighbor , andedgewWork methods are not implemented by ther component.
Instead they are inherited from components above it in the compositéeighbor andnextNeigh-
bor are implemented in theGRAPKcOmMponent (as they encode the iteration over nodes of a grajgh).
Work is a traversal refinement and (in this case) is implemented bythgErRzomponent.

We can now see how mixin layers are both reusable and interchangeablesTT¢t@mponent of Figure 4

is oblivious to themplementationef methods in components above it. Inste@dr only knows thenter-

face of the methods it expects from its parent. Thus, the code of (4) represents a skeleton expressed in
terms of abstract operationstNeighbor , nextNeighbor , andedgework . Changing the implementation

of these operations merely requires the swapping of mixin layers. For instance, we can create an applica-
tion (CycleC) that checks for cycles in a graph by replacingb®BEROmponent witlCYCLE

13

typedef DFT < CYCLE < DEFAULTW < UGRAPH > > > CycleC,;

The results of compositiongycleC above andiumberC in Figure 4(a)) can be used by a client program as
follows: First, an instance of the nestechph class umberC::Graph 0Or CycleC::Graph) needs to be cre-
ated. Thenyertex o0bjects are added and connected in the graphgthen role in mixin-layeruGRAPH
defines methodaddvertex andaddedge for this purpose). After the creation of the graph is complete,
calling methodiepthFirst on it executes the appropriate graph algorithm.

Mixin layers are the building blocks of a graph application product-line. Each mixin layer is a reusable
component and different members (i.e., products) of the family can be created by using different composi-
tions of mixin layers. Note that no direct editing of the component is necessary and multiple copies of the
same component can co-exist in the same composition. For instance, we could combine two graph algo-
rithms by using two instances of tieT mixin layer (in the same inheritance hierarchy), refined to perform

a different operation each time:

class NumberC: public DFT < NUMBER < DEFAULTW < UGRAPH>> > 4
class CycleC :public DFT < CYCLE < NumberC > > 4 (5)

Both algorithms can be invoked, depending on whether we access the depth-first traversal tivaugh a
berC or acCycleC reference:

CycleC::Graph *graph_c = new CycleC::Graph();
NumberC::Graph *graph_n = graph_c;

Now a call tograph_c->depth_first invokes the cycle checking algorithm, while a calldg@aph_n-
>depth_first calls the vertex numbering algorithm. (Alternatively, we can qualify method names directly,
€.0.,graph_c->NumberC::Graph::depth_first(...))

As another example, the design may change to accommodate a different underlying model. For instance,
operations could now be performed on directed graphs. The corresponding updatrireplaces
UGRAPMH to the composition is straightforward (assuming that the algorithms are still valid for directed
graphs as is the case with Holland’s original implementation of this example [Hol92]):

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC,;

Again, note that the interchangeability property is a result of the independence of collaborattosimgle
UGRAPHollaboration completely incorporates all parts of an application that relate to maintaining an undi-
rected graph (although these parts span several different classes). The collaboration communicates with the
rest of the application through a well-defined and usually narrow interface.

For this and other similar examples, the reusability and interchangeability of mixin layers solves the
library scalability problem[BSST93, Big94]: there ara features and often more thahvalid combina-

tions (because composition order matters and feature replication is possible [BO92]). Hard-coding all dif-
ferent combinations leads to libraries of exponential size: the addition of a single feature can double the
size of a library. Instead, we would like to have a collection of building blocks and compose them appropri-
ately to derive the desired combination. In this way, the size of the library grows linearly in the number of
features it can express (instead of exponentially, or super-exponentially).

7. By “independence” we mean that collaborations are composable because they conform to a particular design—all collabora-
tions use Graph, Vertex, and Workspace classes with standardized methods. Given this standardization, the interchangeabil-
ity—or independence—of these collaborations is achieved.

14

Multiple Collaborations in a Single DesignAn interesting question is whether mixin layers can be used to
express collaboration-based designs where a single collaboration is instantiated more than once with the
same class playing different roles in each instantiation. The answer is positive, and the desired result can be
effected usingdaptormixin layers. Adaptor layers add no implementation but adapt a class so that it can
play a pre-defined role. That is, adaptor layers contain classes with empty bodies that are used to “redirect”
the inheritance chain so that predefined classes can play the required roles.

Consider the case of a producer-consumer collaboration, which was briefly discussed in Section 2.1. Our
example is from the domain of compilers. A parser in a compiler can be viewed as a consumer of tokens
produced by a lexical analyzer. At the same time, however, a parser is a producer of abstract syntax trees
(consumed, for instance, by an optimizer). We can reuse the same producer-consumer collaboration to
express both of these relationships. The reason for wanting to provide a reusable implementation of the
producer-consumer functionality is that it could be quite complex. For instance, the buffer for produced-
consumed items may be guarded by a semaphore, multiple consumers could exist, etc. The mixin layer
implementing this collaboration takesm as a parameter, describing the type of elements produced or
consumed:

template <class CollabSuper, class Item>

class PRODCONS public CollabSuper {
public:
class Producer : public CollabSuper::Producer {

void produce(ltem item) { ... }
/I The functionality of producing Items is defined here
... Il other Producer role methods

}s

class Consumer : public CollabSuper::Consumer {
Item consume() { ... }
/I The functionality of consuming Items is defined here
... Il other Consumer role methods
s
s

That is,PRODCONAdds the generic “produce” functionality to thexducer class and adds generic “con-
sumer” functionality to theonsumer class.

Now we can use two simple adaptors to make a single ctass:() be both a producer and a consumer in
two different collaborations. The first adapteRODADAPTexpresses the facts that a producer is also going
to be a consumer (the actual consumer functionality is to be added later) and tlogtitfieer class
inherits the existing consumer functionality. This adaptor is shown below:

template <class CollabSuper> class PRODADAPTpublic CollabSuper {
public:

class Consumer : public CollabSuper::Producer {}

class Optimizer : public CollabSuper::Consumer {};

class Producer { }

b

The second adaptoCONSADAPTis similar:

15

template <class CollabSuper> class CONSADAPT public CollabSuper {

public:
class Lexer : public CollabSuper::Producer {} ;
class Parser : public CollabSuper::Consumer {}

}s

Now a single composition can contain two copies ofRR®@DCONBIXIn layer, appropriately adapted. For
instance:

typedef COMPILER < CONSADAPT < PRODCONS <
PRODADAPT < PRODCONS < ..., Tree> >, Token > > >
CompilerApp ; (6)

In the above, theoMPILERmIxXin layer is assumed to contain the functionality of a compiler that defines
three classesgxer , Parser , andoptimizer . These classes use the functionality supplied by the producer-
consumer mixin layer. For instance, there may hparee method inCOMPILER::Parser that repeatedly

calls theconsume and produce methods. To better illustrate the role of adaptors, Figure 5 shows the
desired inheritance hierarchy for this example, as well as the way that adaptors are used to enable emulat-
ing this hierarchy using only predefined mixin layers. Note that each of the layers participating in compo-
sition (6), above, appears as a rectangle in Figure 5(b).

3.2.2 Comparison to Application Frameworks

In object-oriented programming, abstractclass cannot be instantiated (i.e., it cannot be used to create
objects) but is only used to capture the commonalities of other classes. These classes inherit the common
interface and functionality of the abstract class. dhject-oriented application framewo(kr justframe-

work) consists of a suite of interrelated abstract classes that embodies an abstract design for software in a
family of related systems [JF88]. Each major component of the system is represented by an abstract class.
These classes contain dynamically bound methadsa(in C++), so that the framework user can add
functionality by creating subclasses and overriding the appropriate methods. Thus, frameworks have the
advantage of allowing reuse at a granularity larger than a single abstract class. But frameworks have the
disadvantage that using them means manually making the client classes inherit from framework classes.
Thus, the framework classes cannot easily be interchanged (with a different, similar framework) and the
client classes cannot be reused in a different context—they are hard-wired to the framework.

In a white-box frameworkusers specify system-specific functionality by addingthodsto the frame-

work’s classes. Each method must adhere tarttegnal conventions of the classes. Thus, using white-box
frameworks is difficult, because it requires knowledge of their implementation details black-box
framework the system-specific functionality is provided by a set of classes. These classes must adhere
only to the properexternalinterface. Thus, using black-box frameworks is easier, because it does not
require knowledge of their implementation details. Using black-box frameworks is further simplified when
they include a library of pre-written functionality that can be used as-is with the framework.

Frameworks can be used to implement collaboration-based designs, but the amount of flexibility and mod-
ularity they can afford is far from optimal. The reason is that frameworks allow the reuse of abstract classes
but have no way of specifying collections of concrete classes that can be used at will (i.e., either included
or not and in any order) to build an application ([BCS99]). Intuitively, frameworks allow reusing the skele-
ton of an implementation but not the individual pieces that are built from the skeleton. This can be seen
through a simple combinatorics argument. Consider a set of four feafy®BsC, andD that can be com-

bined arbitrarily to yield complete applications. For simplicity, assume that featigealways first, and

that no feature repetition is allowed. Then a framework may encode feature combiBtittrus allowing

16

Tree ProducerTree Consumer

Token Token
Consumer Producer
Parser Optimizer Lexer

Figure 5(a) : The desired inheritance hierarchy has a Parser inheriting functionality both
from a consumer class (a Parser is a consumer of tokens) and a producer class (a Parser
is a producer of trees).

Tree ProducerTree Consumer

PRODCONS

PRODADAPT

PRODCONS

CONSADAPT

Lexer Parser Optimizer

Figure 5(b) : By using adaptor layers (dotted rectangles), one can emulate the inheritance
hierarchy of Figure 5(a), using only pre-defined mixin layers (solid rectangles). Since a sin-
gle mixin layer (PRODCONSSs instantiated twice, adaptors help determine which class will
play which role every time.

COMPILER

the user to program combinatioABCDandABDC. Nevertheless, these combinations must be coded sep-
arately (i.e., they cannot use any common code other than their common BigfixThe reason is that

each instantiation of the framework creates a separate inheritance hierarchy and reusing a combination is
possible only if one can inherit from one of its (intermediate or final) classes—only common prefixes are
reusable. In our four-feature example, combinations that have no common prefix with the framework (for
instance ACD) simply cannot take advantage of it and have to be coded separately. This amounts to expo-
nential redundancy for complex domains.

In the general case, assume a simple cost model that assigns one cost unit to each re-implementation of a
feature. If feature order matters but no repetitions are possible, the cost of implementing all possible com-
binations using frameworks is equal to the number of combinations (each combination ofHetiffgins

by one feature from its prefix of lengiil). Thus, forn features, the total cost for implementing all combi-

17

n
nations using frameworks isz ﬁ . (This number is derived by considering the sum of the feature
k=1 ’
combinations of length, for eachk from 1 ton.) In contrast, the cost of using mixin layers for the same
implementation is equal to—each component is implemented once and can be combined in arbitrarily
many ways. With mixin layers, even compaositions with no common prefixes share component implemen-
tations.

Even though our combinatorics argument represents an extreme case, it is reflective of the inflexibility of
frameworks. Optional features are common in practice and frameworks cannot accommodate them, unless
all combinations are explicitly coded by the user. This is true even for domains where feature composition
order does not matter or features have a specific order in which they must be used.

Another disadvantage of using frameworks to implement collaboration-based designs comes from the use
of dynamically bound methods in frameworks. Even though the dynamic dispatch cost is sometimes negli-

gible or can be optimized away, often it imposes a run-time overhead, especially for fine-grained classes
and methods. With mixin layers, this overhead is avoided, as there is little need for dynamic dispatch. The

reason is that mixin layers can be ordered in a composition so that most of the method calls are to their par-
ent layers.

This reveals a general and important difference between mixin-based programming and standard object-
oriented programmingWhen a code fragment in a conventional OO class needs to be generic, it is imple-
mented in terms of dynamically bound methods. These methods are later overridden in a subclass of the
original class, thus refining it for a specific purpose. With mixin classes, the situation is different. A
method in a mixin class can define generic functionality by calling methods in the class’s (yet undefined)
superclassThat is, generic calls for mixins can be both up-calls and down-calls in the inheritance hierar-
chy. Generic up-calls are specialized statically, when the mixin class’s superclass is set. Generic down-
calls provide the standard OO run-time binding capabilities. Their use can be limited to cases where the
exact version of the method to be called is truly not known until run-time. In contrast, in application frame-
works, dynamic binding is often used just for modularity reasons (calling functionality without yet having
defined it) even if the target ends up being known statically. This can be eliminated in a mixin-based
approach because we are allowed to add functionality to a mixin class’s superclass. Refinement of existing
functionality is not just a top-down process but involves composing mixins arbitrarily, often with many dif-
ferent orders being meaningful.

Example.We illustrate the above points with the graph algorithm example of Section 2.2. The original
implementation of this application [Hol92] used a black-box application framework on which the three
graph algorithms were implemented. The framework consists of the implementations@éghe ver-

tex , and Workspace classes for théJndirected Graphand Depth First Traversalcollaborations. The
classes implementing the depth-first traversal have methodsprieork , postwork , edgework, etc.,

which are declared to be dynamically boufwtual in C++). In this way, any classes inheriting from the
framework classes can refine the traversal functionality by redefining the operation to be performed the
first time a node is visited, when an edge is traversed, etc.

VanHilst and Notkin discussed the framework implementation of this example in detail [VN96a]. Our pre-
sentation here merely adapts their observations to our above discussion of using frameworks to implement
collaboration-based designs. A first observation is that, in the framework implementation, the base classes
are fixed and changing them requires hand-editing (usually copying and editing, which results in redundant
code). For instance, consider applying the same algorithms to a directed, as opposed to an undirected
graph. If both combinations need to be used in the same application, code replication is necessary. The rea-

18

Object Classes

Object OA Object OB Object OC

w (Collaboration | gy a1 Role B1 Role C1
9 cl
9 .
= Collaboration | goe A2 Role B2
5 c2
= -
5 (Collaboratlon Role B3 Role C3 >
O
o c3
8 (Collaborat

(Cl(l) aboration Role A4 Role B4 Role C4 >

Figure 6 : Example collaboration decomposition. Ovals represent collaborations, rectan-
gles represent objects, their intersections represent roles.

son is that the classes implementing the graph algorithms §egex Numberingmust have a fixed
superclass. Hence, two different sets of classes must be introduced, both implementing the same graph
algorithm functionality but having different superclasses.

A second important observation pertains to our earlier discussion of optional features in an application. In
particular, a framework implementation does not allow more than one refinement to co-exist in the same
inheritance hierarchy. Thus, unlike the mixin layer version of code fragment (5) in Section 3.2.1, we can-
not have a single graph that implements both Weetex Numberingind theCycle Checkingperations.

The reason is that the dynamic binding of methods in the classes implementing the depth-first traversal
causes the most refined version of a method to be executed on every invocation. Thus, multiple refinements
cannot co-exist in the same inheritance hierarchy since the bottom-most one in the inheritance chain
always supersedes any others. In contrast, the flexibility of mixin layers allows us to break the depth-first
traversal interface in two (theeEFauLTWaNd theDFT component, discussed earlier) so tbat calls the

refined method its superclasgi.e., without needing dynamic binding). In this way, multiple copies of

the DFT component can co-exist and be refined separately. At the same time, obviating dynamic binding
results into a more efficient implementation—dynamic dispatch incurs higher overhead than calling meth-
ods of known classes (although sometimes it can be optimized by an aggressive compiler).

3.2.3 Comparison to the VanHilst and Notkin Method

The VanHilst and Notkin approach [VN96a-c, Van97] is another technique that can be used to map collab-
oration-based designs into programs. The method employs C++ mixin classes, which offer the same flexi-
bility advantages over a framework implementation as the mixin layers approach. Nevertheless, the
components represented by VanHilst and Notkin are small-scale, resulting in complicated specifications of
their interdependencies.

VanHilst and Notkin use mixins in C++ to represent roles. More specifically, each individual role is
mapped to a different mixin and is also parameterized by any other classes that interact with the given role
in its collaboration. For an example, consider m4dan Figure 6 (which replicates Figure 1 for easy refer-
ence). This role participates in a collaboration together with two other rdesmydca. Hence, it needs to

be aware of the classes playing the two roles (so that, for instance, it can call appropriate methods). With

19

the VanHilst and Notkin technique, the role implementation would be a mixin that is parameterized by
these two extra classes:

template <class RoleSuper, class OA, class OC> class B4 : public RoleSuper {
... I* role implementation, using OA, OC */

}; (7

Consider that the actual values for paramegeysocwould themselves be the result of template instantia-
tions, and their parameters also, and so on (up to a depth equal to the number of collaborations). This
makes the VanHilst and Notkin method complicated even for relatively small examples. In the case of a
composition oi collaborations, each witimroles, the VanHilst and Notkin method can yield a parameter-
ization expression of lengtl" . Additionally, the programmer has to explicitly keep track of the mapping
between roles and classes, as well as the collaborations in which a class participates. For instance, the
mixin for role A4 in Figure 1 has to be parameterized with the mixin for rete—the programmer cannot

ignore the fact that collaboratia8 does not specify a role for obje@A. From a software evolution stand-

point, local design changes cannot easily be isolated, since collaborations are not explicitly represented as
components. These limitations make the approach unscalable: various metrics of programmer effort (e.g.,
length of composition expressions, parameter bindings that need to be maintained, etc.) grow exponen-
tially in the number of features supported. (This is the same notion of scalability as in our earlier discus-
sion of the library scalability problem.)

Conceptually, the scalability problems of the VanHilst and Notkin approach are due to the small granular-

ity of the entities they represent: each mixin class represents a single role. Roles, however, have many
external dependencies (for instance, they often depend on many other roles in the same collaboration). To
avoid hard-coding such dependencies, we have to express them as extra parameters to the mixin class, as in
code fragment (7). Reusable components should have few external dependencies, as made possible by
using mixin layers to model collaborations.

Example. Consider a composition implementing both tBycle Checkingind theVertex Numberingpera-

tion on the same graph. Recall that the ability to compose more than one refinement (or multiple copies of
the same refinement) is an advantage of the mixin-based approach (both ours and the VanHilst and Notkin
method) over frameworks implementations.

The components (mixins) used by VanHilst and Notkin are similar to the inner classes in our mixin layers,
with extra parameters needed to express their dependencies with other roles in the same collaboration. Our
specification is shown in Figure 7(a) (reproducing code fragment (5)). A compact representation of a Van-
Hilst and Notkin specification is shown in Figure 7(b). (A more readable version of the same code included

in [VN96a] is even lengthief.

Figure 7(b) makes apparent the complications of the VanHilst/Notkin approach. Each mixin representing a
role can have an arbitrary number of parameters and can instantiate a parameter of other mixins. In this
way, parameterization expressions of exponential (to the number of collaborations) length can result. To
alleviate this problem, the programmer has to introduce explicitly intermediate types that encode common
sub-expressions. For instaneeis an intermediate type in Figure 7(b). Its only purpose is to avoid intro-
ducing the sub-expressiofrtexDFT<WS,VNumber> three different times (whereveris used). Of course,
VNumber itself is also just a shorthand forrtexNumber<ws,VWork> . VWork, in turn, stands fovertexDe-

faultwWork<ws VGraph> , and so or?. Additional complications arise when specifying a composition: users

8. The object code of both is, as expected, of almost identical size.

20

class
class

NumberC: public DFT <NUMBER <DEFAULTW <UGRAPH>>> {} ;

CycleC : public DFT < CYCLE < NumberC > >

4

Figure 7(a) : Our mixin layer implementation of a multiple-collaboration composition. The
individual classes are members of NumberC, CycleC (e.g., NumberC::Vertex
CycleC::Graph , etc.).

class Empty {} ;

class WS : public WorkspaceNumber 4
class WS2 : public WorkspaceCycle 4
class VGraph : public VertexAdj<Empty> {4
class VWork : public VertexDefaultWork<WS,VGraph> 4
class VNumber : public VertexNumber<Ws,VWork> 4
class V : public VertexDFT<WS,VNumber> 4
class VWork2 : public VertexDefaultWork<WS2,V> 4
class VCycle :public VertexCycle<WS2,VWork2> 4
class V2 : public VertexDFT<WS2,VCycle> {4
class GGraph : public GraphUndirected<Vv2> 4
class GWork : public GraphDefaultWork<V,WS,GGraph> 4
class Graph : public GraphDFT<V,WS,GWork> 4
class GWork2 : public GraphDefaultWork<V2,WS2,Graph> 4
class GCycle : public GraphCycle<WS2,GWork2> {4
class Graph2 : public GraphDFT<V2,WS2,GCycle> 4

Figure 7(b) : Same implementation using the VanHilst/Notkin approach. V corresponds to
our NumberC::Vertex , Graph to NumberC::Graph , WSto NumberC::Workspace , etc.

must know the number and position of each parameter of a role-component. Both of the above require-
ments significantly complicate the implementation and make it error-prone.

Using mixin layers, the exponential blowup of parameterization expressions is avoided. Every mixin layer
only has a single parameter (the layer above it). By parameterizing a mixin AapgrB, A becomes
implicitly parameterized by all the roles 8 Furthermore, iB does not contain a role for an object ti#at
expects, it will inherit one from above it. This is the benefit of expressing the collaborations themselves as
classes: they can extend their interface using inheritance.

Another practical advantage of mixin layers is that it encourages consistent naming for roles. Hence,
instead of explicitly giving unique names to role-members, we have standard names and only distinguish
instances by their enclosing mixin layer. In this wagrtexDFT , GraphDFT, andVertexNumber become
DFT:Vertex , DFT:Graph andNUMBER::Vertex , respectively.

In [VN96a], VanHilst and Notkin questioned the scalability of their method. One of their concerns was that
the composition of large numbers of roles “can be confusing even in small examples...” The observations
above (length of parameterization expressions, number of components, consistent naming) show that
mixin layers address this problem and do scale gracefully, without losing the advantages of the VanHilst
and Notkin implementation.

9. Some compilers (e.g., MS VC++, g++) internally expand template expressions, even though the user has explicitly introduced
intermediate types. This caused page-long error messages for incorrect compositions when we experimented with the VanHilst
and Notkin method, rendering debugging impossible.

21

3.3 Mixin Layers Considerations

We have argued that mixin layers are better for implementing collaboration-based designs than other alter-
natives. Nevertheless, mixin layers are certainly not a “silver bullet”. They are good for in-house develop-
ment of product-line architectures for mature domains and require programming language and tool support
for specification and debugging. These points are analyzed below in more detail, but we note that they are
by no means specific to mixin layers: other competitive techniques (e.g., application frameworks, or the
VanHilst and Notkin method) have similar restrictions.

» Appropriate Domains for Mixin LayerMixin layers are not appropriate for every domain. In general,
the most suitable domains are mature, well-understood, amenable to detailed decompositions and elab-
orations of collaboration-based designs. The domain should be decomposable into largely independent
refinements. Composing such refinements need not result in an increase in the level of abstraction.
Instead, refinements can represent different concerns at the same conceptual level. (E.g., the addition
of more operations on graphs does not alter the abstraction that we are still dealing with graphs; rather,
adding more operations merely enriches the graph abstraction.) A well-known observation is that, even
in strictly layered domains, like operating systems, the notion of “information module” does not neces-
sarily coincide with the notion of “layer of abstraction”. Modules may encompass different parts of
several layers [HFC76]. Mixin layers are a kind of "information module" and similar observations
apply.
Mixin layers lead to physically layered implementations, which may or may not have a negative
impact on application performance. Mixin layers are implementations of a standard design imposed on
a domain. In-house environments of individual companies are best to maintain this standard; open col-
laborative communities might make such standards difficult to follow. No precise quantification of
these properties can be given, but a designer can usually assess the appropriateness of our techniques.

» Difficulties in Using Mixin LayersGood OO designs limit the depth of inheritance hierarchies to a
small number (e.g., 3). In contrast, compositions of mixin layers often leads to long inheritance chains.
This can become problematic during debugging (chasing method calls up an inheritance hierarchy)
and generally understanding where the functionality of a class is located on an inheritance chain.
Another difficulty can be learning the order in which mixin layers can be composed. While this can be
ameliorated by good tool support [BG98], it is something more that needs to be learned and composi-
tion rules need to be precisely stated.

» Implementation Requirements for Mixin Layers and Interaction with Language Feallisdn layers
are only as good as the technology to support them. Some of the proposed implementation techniques
have specific technical disadvantages, especially in conjunction with particular compiler technology.
For instance, our C++ template implementation of mixin layers may result in (binary) code duplication
if the same layer is used multiple times in a composition. Nevertheless, no fundamental implementa-
tion drawbacks exist in relation to mixin layers. Implementation considerations for the C++ version of
mixin layers are described in [SB0O].
Several general programming language issues arise in connection with mixin layers and their composi-
tions. Most of these issues pertain to the interactions of mixin layers with type systems. Type informa-
tion can be used to detect errors in a composition of mixin layers. At the same time, layers are defined
in isolation and the problem of propagating type information between layers is especially interesting.
Since the focus of this paper is not on concrete language solutions, we point the reader to [Sma99],
Chapter 3, where such issues are analyzed in detail.

4 An Application: The Jakarta Tool Suite

In this section, we discuss an application of mixin layers to a medium-size software project (about 30K
lines of code). The project is thiakarta Tool Suite (JTBLS98]—a set of language extensibility tools,

22

aimed mainly at the Java language. We use mixin layers as the building blocks that form different versions
of the Jaktool of JTS. Jak is the modular compiler in JTS. Different versions of Jak can be created using
different combinations of layers. Layers may be responsible for type-checking, compiling, and/or creating
code for a different set of language constructs. Additionally, layers may be used to add new functionality
across a large group of existing classes. In this way, the user can design a language by putting together con-
ceptual language “modules” (i.e., consistent sets of language constructs) and implement a compiler for this
language as a version of Jak composed of the mixin layers corresponding to each language module. Cur-
rently available layers support the base Java language, meta-programming extensions, general purpose
extensions (e.g., syntax macros for Java), a domain-specific language for data structure programming (P3),
etc.

The choice of the compiler domain as a large-scale test case for mixin layers is not arbitrary. Compilers are
well-understood, with modern compiler construction benefiting from years of formal development and
stylized design patterns. The domain of compilers has been used several times in the past in order to dem-
onstrate modularization mechanisms. Selectively, we mentionisiter design pattern [GHJV94], which

is commonly described using the example of a compiler with a class corresponding to each syntactic type
that its parser can recognize (e.g., there is a class for if-statements, a class for declarations, etc.). In this
case, the visitor pattern can be used to add new functionality to all classes, without distributing this func-
tionality across the classes. Our application of mixin layers to the compilers domain has very much the
same modularization flavor. We use mixin layers to isolate aspects of the compiler implementation, which
can be added and removed at will. Compared to the visitor pattern, mixin layers offer greater capabilities—
for instance, allowing the addition of state (i.e., member variables) to existing classes.

Overall, the outcome of applying mixin layers to JTS was very successful. The flexibility afforded by a
layered design is essential in forming compilers for different language dialects. Additionally, mixin layers
helped with the internal organization of the code, so that changes were easily localized. Additions that
could be conceptually grouped together (like those reflecting the language changes from Java 1.0 to Java
1.1) were introduced as new mixin layers, without disrupting the existing design. JTS was thus easier to
implement and has become easier to maintain.

We next discuss JTS and the use of mixin layers in its implementation. Section 4.1 offers some essential
background in JTS by describing the way parsers are generated and initial class hierarchies are established
based on language syntax. Section 4.2 discusses the actual application of mixin layers in JTS.

4.1 JTS Background: Bali as a Parser Generator

Bali is the JTS tool responsible for putting together compilers. Although Bali is a component-based tool, in
this section we limit our attention to the more conventional grammar-specification aspects of Bali.

The syntax of a language is specified as a Bali grammar, which is an annotated BNF grammar extended
with regular-expression repetitions. Bali transforms a Bali grammar into a lexical analyzer and parser. For
example, two Bali productions are shown below: one deffmesmentList ~ as a sequence of one or more
Statements , and the other definesgumentList as a sequence of one or mauguments separated by
commas.

StatementList : (Statement)+ ;
ArgumentList : Argument (‘,” Argument)*;

Repetitions have been used before in the literature [Wir77, Wil93, Rea90]. They simplify grammar specifi-
cations and allow an efficient internal representation as a list of trees.

23

/I Lexeme definitions

"print" PRINT

" PLUS
. MINUS
(" LPAREN
)" RPAREN

"[0-9]*" INTEGER

%% /I production definitions
// start rule is Action

Action : PRINT Expr :: Print
Expr : Expr PLUS Expr :: Plus
| Expr MINUS Expr :: Minus
| MINUS Expr :: UnaryMinus
| LPAREN Expr RPAREN :: Paren
| INTEGER :: Integer

Figure 8: A Bali Grammar for an Integer Calculator

Bali productions are annotated by the class of objects that is to be instantiated when the production is rec-
ognized. For example, consider the Bali specification of theeledstmt rule:

SelectStmt
1 IF ‘(" Expression ‘)’ Statement =1fStm
| SWITCH ‘(" Expression ‘)’ Block 1:SwStm

)

When a parser recognizes an “if’ statement (i.e.,Iartoken, followed by (‘, Expression , ‘)’, and

Statement), an object of classstm is created. Similarly, when the pattern defining a “switch” statement

(a swiTcHtoken followed by (‘, Expression , ‘)’, andBlock) is recognized, an object of clasgstmis

created. As a program is parsed, the parser instantiates the classes that annotate productions, and links
these objects together to produce the syntax tree of that program.

A Bali grammar specification is a streamlined document. It is a list of the lexical patterns that define the
tokens of the grammar followed by a list of annotated productions that define the grammar itself. A Bali
grammar for an elementary integer calculator is shown in Figure 8. From this grammar specification, Bali
generates a lexical analyzer and a parser (we use@x lexer/parser generator as a backend).

Associating grammar rules with classes allows Bali to do more than generate a parser. In particular, Bali
can deduce an inheritance hierarchy of classes representing different pieces of syntax. Consider Figure
9(a), which shows rulerulel1 andRule2 . When an instance afulel is parsed, it may be an instance of
pattern1 (an object of class1), or an instance dakule2 (an object of clasgule2). Similarly, an instance

of Rule2 is either an instance @httern2 (an object ofc2) or an instance ofattern3 (an object ofc3).

From this information, the inheritance hierarchy of Figure 9(b) is constructed: classaslRule2 are
subclasses ¢fulel , andc2 andc3 are subclasses Riile2 .

24

(@) Rulel : patternl : C1 (b) (Rulel)

| Rule2
(c1) (Rule2)

Rule2 : pattern2 mC2
| pattern3 = C3

Figure 9: Inferring inheritance hierarchies from grammar rules

Additionally, for each production Bali infers the constructors for syntax tree node classes. Each parameter

of a constructor corresponds to a token or nonterminal of a pa"t?d?nr example, the constructor of the
Itstm class has the following signature:

IfStm(Token iftok, Token Ip, Expression exp, Token rp, Statement stm)
Methods for editing and unparsing nodes are additionally generated.

Although Bali automatically generates an inheritance hierarchy and some methods for the produced Jak
compiler, there are obviously many methods that cannot be generated automatically. These include type
checking, reduction, and optimization methods. Such methods are syntax-type-specific; we hand-code
these methods and encapsulate them as a mixin layer that contains subclasses of Bali-generated classes.

In essence, Bali takes the grammar specification and uses it to produce a skeleton for the compiler of the
language. The skeleton has the form of a set of classes organized in an inheritance hierarchy, together with
the methods that can be automatically produced (that is, constructors, editing, and unparsing methods). In
other words, Bali produces application frameworfJF88] for a compiler. As we explain in the next sec-

tion, the framework itself is a mixin layer that occupies the root of a mixin layer composition.

4.2 Bali Components and Mixin Layers in JTS

Apart from its parser generator aspect, Bali is also a tool that synthesizes language implementations from
components. Bali can create compilers for a family of languages, depending on the selection of compo-
nents used as its input. This is essentially a product-line of language translators, with their common func-
tionality factored out in reusable components. We use the nikdor any Bali-generated compiler.
Currently available Bali components support the base Java language, meta-programming extensions (e.g.,
code template operators), general purpose extensions (e.g., syntax macros for Java), a domain-specific lan-
guage for state machines [BJMHO0O0], and more. Compositions of these components define different vari-
ants of Jak (i.e., different members of a product-line of Java dialects): with/without meta-programming
constructs, with/without state machine extensions, with/without data structure extensions, and so on. This
another instance of the library scalability problem [BSST93, Big94]. We want to compose the different
variants of Jak from components encapsulating orthogonal units of functionality.

A Bali componentas two parts: The first is a Bali grammar file (which contains the lexical tokens and
grammar rules that define the syntax of the host language or language extension—for extensions that only
change the semantics but not the syntax, this file is absent). The second is a mixin layer encapsulating a

10. The tokens need not be saved. However, Bali-produced precompilers presently save all white space—including comments—
with tokens. In this way, JTS-produced tools that transform domain-specific programs retain embedded comments. This is use-
ful when debugging programs with a mixture of generated and hand-written code, and is a necessary feature if transformed
programs are subsequently maintained by hand.

25

Bali component stack Inheritance hierarchy after mixin layers composition

AstNode
Java i e e

Bali-generated
SST % i classes
GScope

Subclasses added
P3 by mixin layers

Figure 10: The Jak Inheritance Hierarchy

collection of multiple hand-coded classes that contain the reduction, type-checking, etc. methods for each
syntax type defined in that grammar file.

To illustrate how classes are defined and refined in Bali, consider four concrete Bali compaavanis:a
component implementing the base Java languagejmplements code template operators like tree con-

structors and explicit escapé]sGSmpe supplies scoping support for program generation, _hianple-

ments a language for data structures. The Jak language and compiler can be defined by a composition of
these components. We use the] operator to designate component composition—for instance,
P3[GScope[SST[Java]]]

The syntax of a composed language is defined by taking the union of the sets of production rules in each
Bali component grammar. The semantics of a composition is defined by composing the corresponding
mixin layers. Figure 10 depicts the class hierarchy of the Jak compiteiode belongs to the JTS kernel,

and is the root of all inheritance hierarchies that Bali generates. Using the composition grammar file (the
union of the grammar files for th&ava , SST, GScope, andP3 components), Bali generates a mixin layer

that encapsulates the hierarchy of classes that contain tree node constructors, unparsing, and editing meth-
ods. Each remaining mixin layer then grafts onto this hierarchy its hand-coded classes. These define the
reduction, optimization, and type-checking methods of tree nodes by refining existing cldsséstmi-

nal classes of this hierarchy are those that are instantiated by the generated compiler.

It is worth noting that Figure 10 is not drawn to scale. Jak consists of over 500 classes. The number of
classes that a mixin layer adds to an existing hierarchy ranges from 5 to 40. Nevertheless, the simplicity
and economy of specifying Jak using component compositions is enormous: to build the Jak compiler, all
that users have to provide to Bali is the equatiain= P3[GScope[SST[Java]]] , and Bali does the rest. To
compose all these classes by hand (as would be required by Java) would be very slow, extremely tedious,
and error prone. Additionally, the scalability advantages of mixin layers can easily be demonstrated: when
new extension mechanisms or new base languages are specified as components, a subset of them can be
selected and Bali automatically composes a compiler for the desired language variant.

4.3 Java Mixin Layers for JTS

In Section 3.1.3, we discussed the applicability of mixin layers in various programming languages. There
we explained that Java already supports nested classes but the language currently specifies no parameter-
ization mechanism. Furthermore, some of the proposed parameterization mechanisms for Java (e.g., Pizza

11. Our code template operators are analogous to the backquote/unquote pair of Lisp operators. Unlike Lisp, however, multiple
operators exist in JTS—one for each syntactic type (e.g., declaration, expression, etc.). Multiple constructors in syntactically
rich languages are common (e.g., [WC93], [Chi96]). The main reason has to do with the ease of parsing code fragments.

26

[OW97] or Thorup’s virtual types [Tho97]) do not support parameterized inheritance. In order to support
mixin layers for Bali components in JTS, we implemented our own Java language extensions for parame-
terization. This section gives a brief overview of the main language construct.

Our parameterization extensions to Java are geared towards mixin layer development (as opposed to gen-
eral-purpose genericity). Our approach in designing and implementing these language constructs was
motivated by pragmatic and not conceptual considerations: we needed a layer mechanism to facilitate our
own development efforts—not to supply the best-designed and robust parameterization mechanism for
Java. Therefore, our implementation was straightforward, adopting a heterogeneous model of transforma-
tion: for each instantiation of a mixin layer, a new Java class is created at the source code level. Thus, our
approach resembles C++ template instantiation and does not take advantage of the facilities for load-time
class adaptation offered by the Java Virtual Machine (see, e.g., the approach of Agesen et al. [AFM97] and
the work on binary component adaptation [KH98]). Nevertheless, in our context our approach is not neces-
sarily at a disadvantage. Mixin layers in Bali component compositions are never reused in the same appli-
cation (i.e., a single Jak compiler uses at most one instance of a mixin layer). Therefore, code bloat
(redundancy in generated classes) is not a problem. At the same time, our straightforward approach made
for an easier implementation which contributed to the faster development of JTS.

The implementation of our Java extensions for mixin layer support occurred concurrently with the devel-
opment of JTS. In fact, an early version of JTS was used to implement the first version of our Java mixin
layers. The Java mixin layers were, in turn, used to evolve and further develop JTS, resulting in a boot-
strapped implementation. (Actually, this is not the only reason why JTS is based on a bootstrapped imple-
mentation. Another reason is that the meta-programming capabilities added to Java have been used in the
code that implements JTS itself. The entire JTS system is compiled using a basic version of the Jak com-
piler, composed of only a few layers that specify the basic Java language, code template operators, syntax
macros, etc.)

The syntax of mixin layers is straightforward and resembles their C++ counterparts. Two new keywords
are introducedayer andrealm . Thelayer keyword is analogous teass but defines a mixin layer (i.e.,

an outer class that may be parameterized with respect to its superclassgaiihekeyword is used to
specify interface conformance for mixin layers, in analogy to the dapaments keyword. Finally, the

[..] operator is used to specify layer composition. The (slightly simplified) general form of a layer defi-
nition is shown below, with the terminal symbols appearing in bold for clarity:

layer_definition :
layer layer_name (param_list) realm realm_name [super] { declaration_list }

The syntax for non-terminals in the above definition is straightforwaiedm_list is a list of type param-

eters for the mixin layer. If the parameter list contains layers, the parameterization can be constrained by
specifying the expected realm of these layers. The optiampal construct designates artends clause

(in much the same way as for regular Java classes). The contents of a mixin layer can only be Java type
declarations.

The actual details of our implementation are not important. We consider of much greater importance the
general approach that this implementation represents. What we did in JTS is an examgdenafia-spe-

cific languagesapproach to software construction. In the course of creating a medium-size software
project, we recognized that mixin layers would facilitate our task significantly. That is, we saw an opportu-
nity for improving our implementation through extra language support. It then proved cost-effective to add
the extra linguistic constructs that were needed (i.e., mixin layers), in the course of implementing the orig-
inal project (i.e., JTS).

27

It is our belief that the domain-specific language approach to software construction is a promising way to
building better software. The designer of a software application can (and should) be thinking about lan-
guage constructs that can have a significant impact in the application’s efficiency, maintainability, or reus-
ability. Often such constructs can be readily identified, but they are not available in the implementation
language of choice. With the advent of language extensibility tools, as well as extensible/reflective pro-
gramming languages, supplying special-purposed{mnain-specificlanguage support may be the right
approach in fighting software complexity. JTS itself is a tool aiming at facilitating the implementation of
domain-specific languages and language extensions. The use of mixin layers in the implementation of JTS
is a vivid demonstration of the same paradigm that JTS promotes.

5 Related Work

There is an enormous wealth of research in the area of component-based software construction and code
modularization. Here we selectively discuss some approaches that are related to our work but have not
been described previously in this paper.

5.1 GenVoca

GenVoca is a layered design and implementation methodology, mainly appliggblication generators

(i.e., compilers for domain-specific programming languages). GenVoca advocates that a domain be decom-
posed in terms of largely-orthogonal features which are implemented as layers. Applications in the domain

can be synthesized by composing layers; layer composition is performed by a generator. The name “Gen-
Voca” was derived from the first two generators that exhibited these principles: Genesis (extensible data-

base systems) [Bat88, BEG8] and Avoca (network protocols) [OP92]. GenVoca generators for other
domains include: data manipulation languages [Vil94], distributed file systems [HP94], host-at-sea buoy
systems [Wei90], and real-time avionics software [CS93]. Mixin layers were originally inspired by the
GenVoca model and are now an essential part of its arsenal of implementation techniques. Although we
have not attempted full implementations, our experience suggests that mixin layers can be used to obtain
many of the same benefits as full GenVoca generators for the above domains. That is, much of the benefit
of GenVoca generators is due to the layering technology and not to the use of compiler techniques.

5.2 Modules in High-Level Languages

High-level languages often provigeodulega.k.a.package®r namespacgsas fundamental abstractions.
Representative approaches include Agackages[ISO95]—which is a prototypical modularization
scheme for block structured languages, ML [MTH90]—which provides a very powerful module system

based on polymorphic types, Jpackagesand C++namespace§tr97].12

Mixin layers are expressible in the latest incarnations of Ada (Ada95 [ISO95]). Standard ML still lacks
support for extensible records (i.e., a counterpart of inheritance). Nevertheless, there is nothing fundamen-
tal that prevents integrating mixin layers in either language. Recent research has brought some of the mixin
layers ideas in a modular language framework. Findler and Flatt's work [FF98] introduces constructs
remarkably similar to mixin layers, in an experimental, module-based object system.

The most interesting lesson, however, is that modules—unlike classes—are often not well integrated in
programming languages. For example, a C++ namespace cannot be parameterized, while a class can. This

12. Itis perhaps debatable whether C++ namespaces and Java packages are modules, because they can be later re-opened and have
more definitions added to them. Nevertheless, we choose to include these mechanisms here. In practice, they are often used
under certain assumptions in the same way as modules in other languages. For instance, several Java tools perform whole-
package static analysis, although a change in any file of the package may invalidate the results of the entire analysis.

28

prevents us from using mixin-like patterns with C++ namespaces. With class nesting and parameterized
inheritance, mixin layers are a kind of module with some desirable characteristics from a Software Engi-
neering standpoint.

5.3 Meta-Object Protocols

Meta-Object Protocolge.g., [FDM94, KRB91]) are reflective facilities for modifying the behavior of an
object system while the system is being used. Classical modifications include executing arbitrary code
around method invocations (methaglapping and changing the semantics of inheritance. Specific exam-
ples of method wrapping include function tracing, invariant checking, and object locking [FDM94].

Meta-object protocols solve a different problem than mixin layers. Mixin layers address the issue of group-
ing class refinements together so they can be treated as a unit. In contrast, meta-object protocols can
express modifications to fundamental operations of an object system. Meta-object protocols can be used
for desirable functionality additions that are not convenient with mixin layers—e.g., the application of a
single wrapper to all methods of a class at once. Of course, a meta-object protocol is a mechanism, not a
design guideline. An appropriately designed meta-object protocol, allowing the encapsulation of many
metaclasses in parameterized modules, could certainly be used to implement mixin layers. Unfortunately,
to our knowledge, none of the standard meta-object protocols offer such encapsulation capabilities.

5.4 Aspect-Oriented Programming

Aspect-oriented programming (AORYlvocates decomposing application domains into orthogspedcts

[KLM *97]. Aspects are distinct implementation entities that encapsulate code which would otherwise be
intertwined throughout an application. In this respect, aspect-oriented programming seems strikingly simi-

lar to GenVoca. Indeed, early AOP manifestos [KI®7] are very similar to the work describing GenVoca
generators: the software engineering arguments are identical and the implementation techniques used are

very similar. Many of the AOP example applications in [K['BY] are layered generators for domain-spe-

cific languages (an image processing language, a language for specifying data transfer on remote proce-
dure calls, etc.). Domain-specific languages (or language extensions) areasplésd languageim AOP
terminology and generators are caléespect weavers

An aspect, just like a collaboration, expresses a refinement that affects multiple classes of an application.
In this sense, mixin layers can be regarded as an aspect-oriented implementation technique. Nevertheless,
it is perhaps hard to find cross-cutting software implementation techniques that waotutpialify as
“aspect-oriented”. The term has nowadays acquired broad meaning and encompasses many different tech-
niques. We view using “aspect-oriented” terminology as purely a matter of taste. Certainly, the cross-cut-
ting software development ideas pre-date the introduction of “aspect-orientation”.

5.5 Adaptive OO Components

Another approach to modular OO software development is Lieberngersetermethod and adaptive
components [Lie96, LP97, ML98]. Adaptive components specify functionality additions based on an
abstract pattern of participating classes. The pattern can later be applied to actual classes of an application
to extend their capabilities. This technique is analogous to identifying collaborations in an object-oriented
design, only now collaborations are implementation-level entities. Note that mixin layers offer the same
flexibility through the concept of adaptor layers discussed in Section 3.2.1. An important difference is that
adaptor layers are themselves mixin layers. That is, with mixin layers, both the representation of a collabo-
ration and the representation of a collaboration application are the same (namely, mixin layers).

29

Nevertheless, the work on adaptive components reveals an interesting direction of research, with no coun-
terpart in our work. Adaptive components can be declared biyadegy That is, a strategy is a way to
declaratively specify a path through tblass graph(the graph induced on classes by inheritance and con-
tainment relationships among them). Along each node in the strategy, extra methods can be added. In this
way, strategies are compact ways of expressing functionality additions to many classes. For example, one
can easily specify new methods to be added to a eladsall its superclasseSimilarly, assume that class

A has a member variable that can hold an instance of elaghich, in turn, may hold an instance of class

C. Using strategies, a programmer can describe the pathArtant in the class graph. (Clagsdoes not

need to be specified explicitly.) An adaptive component employing this strategy can then define a new
method to be added to all three classes. Thus, strategies are a higher-level way of specifying collaborations
(refinements); mixin layers could be used to implement strategies.

5.6 Design Patterns for Modularization

The visitor design pattern [GHJV94] serves similar modularization purposes to mixin layers. Visitor is a
pattern allowing dunctional style of programming in object-oriented languages: multiple definitions of

the same operation (applicable to objects of several different classes) can be grouped together in a visitor
class, instead of these methods being distributed over individual classes. Visitor is a fundamental modular-
ization mechanism and has been used to implement more sophisticated techniques (e.g., [ML98]).

Visitors are different from mixin layers in two ways. First, visitors are dynamic in nature, whereas mixin
layers are static. This means that mixin layers can be used to add state (i.e., member variables) to the
classes they refine. (For instance, imagine a class describing a graph node. If one wants to maintain the
information ‘is_marked " for all nodes, this is easier to do with mixin layers: anmarked field can be

added in a mixin and carried in every single refined node object. With a visitor-based approach, this infor-
mation must be maintained in a table on the side.) Additionally, visitors impose a run-time overhead,
unlike mixin layers. Second, visitors are not allowed to access the internals of the classes they extend. In
contrast, mixin layers define subclasses of the refined classes. Hence, mixin layers are often able to access
more implementation details than visitors. For instance, a C++ class may export a fairly extensive interface
to its subclasses (using thetected keyword), without making the same interface public so that visitors

can use it. This issue commonly arises when other design patternsigietor) are used in conjunction

with the visitor pattern.

Visitors, like many other design patterns, express refinements of objects or classes. Although not a design

pattern, a mixin layer can be viewed as an elegant way of expressing a collaboration pattern among classes
so that it is clear at the language level. Mixin layers can be expressed with the aid of a type system, rather

than bypassing it, so that more compile-time checking and optimization is possible.

5.7 Subjectivity

Objects written for one application may not be reusable in another because their interfaces are different,
even though both applications may deal with what is fundamentally the same object. The prinsudbe of
jectivity asserts that no single interface can adequately describe any object; objects are described by a fam-

ily of related interfaces [HO93, OH92, OKE5]. The appropriate interface for an object is application-
dependent (osubjectivé.

Subijectivity arose from the need for simplifying programming abstractions—e.g., defining views that
emphasize relevant aspects of objects and that hide irrelevant details. Ossher and Harrison took an impor-
tant step further by recognizing that application-specific views of inheritance hierarchies can be produced
automatically by composing different “subjects” [HO93]. Subjects encapsulate a primitive aspect or

30

“view” of a hierarchy, whose implementation requires a set of additions (e.g., new data and method mem-
bers) to one or more classes of the hierarchy.

Collaboration-based designs and mixin layers are analogous to subjectivity and subjects. Nevertheless,
even though the goals are common, different parts of the problem are emphasized in the two approaches.
The biggest difference between subject-oriented programming and our approach is that a subject-oriented
approach aspires to combine programs that are developed completely independently. Mixin layers focus on
a different problem: the consistent refinement of groups of classes, in order to raise the level of program-
ming from single-class to multiple-class components. Mixin layers need to be developed with interopera-
bility in mind. This makes mixin layers a more general technique, but with a lower degree of automation
and little applicability to pre-written software—manual adaptation is required.

6 Conclusions

Improved modularizations are the key to improved component-based software development. We and others
have observed that traditional notions of modularization—method, class, package—are inadequate for this
purpose. Many different results in modularization point to large-scale refinements—the ability to encapsu-
late and modularize fragments of classes and methods—as the basis for next-generation modularizations.
The core idea centers on the idea of refinement as the centerpiece for component-based software develop-
ment. Our refinements are large-scale: a single refinement can update multiple classes of an application,
and a composition of a few refinements specifies a complete implementation of an application.

The fragments of classes and methods that need to be encapsulatetiatstrary. Rather, fragments are

encapsulated together when they all define how a particular service or feature, which can be shared by
many applications of a domain, is implemented. That is, these fragments must have meaningful expres-
sions in software designs. We have shown that the object-oriented concept of collaboration based designs
captures this idea. A collaboration is an abstract design that specifies roles for different classes of objects,
and defines protocols by which objects of these classes interact to realize a particular service or feature.
Collaborations are the way large-scale (i.e., multi-class) refinements are expressed in object-oriented mod-
els. Applications are typically defined by compositions of a small number of reusable collaborations.

We have shown how collaborations can be defined and composed statically using existing programming
language constructs, and how they can be supported by new language constructs. We presented a particular
way of expressing large-scale refinementsraen layers a name chosen to emphasize its connection to

the commomixin concept in object-oriented languages. We showed how mixin layers overcame the scal-
ability difficulties that plagued prior work. They rely on a novel combination of parameterized inheritance
and class nesting, in effect generalizing the concept of a package (set of classes) so that parameterized
packages could participate in inheritance lattices. As an example, we showed how mixin layers were used
as the primary implementation technique for building an extensible compiler for the Java language.

References
[AFM97] O. Agesen, S. Freund, and J. Mitchell, “Adding Type Parameterization to the Java LangD&iiRSLA
1997, 49-65.

[Bat88] D.S. Batory, “Concepts for a Database System CompilePrateedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systamssin, Texas, March 21-23 1988,
ACM Press, pages 184-192.

[BBG*'88] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell, and T. E. Wise.
GENESIS: An extensible database management systelBEER Transactions on Software Engineering
November 1988. Also, ilReadings in Object-Oriented Database SystegZdonik and D. Maier, ed.,
Morgan Kaufmann, 1990.

31

[BC8Y]

[BC90]
[BCRW9S]

[BCS98]
[BG96]
[BG98]
[Big94]

[BIMHOO]

[BLSO98]
[BO92]
[BOSW98]

[BSST93]
[Chi96]
[CS93]

[Cw8s5]
[FDM94]
[FFo8]
[FKF98]
[GHJIV94]
[GIS96]
[HFC76]
[HHGO0]

[Hol92]
[HO93]

[HP94]
[1SO95]

[Jav97a]
[Jav97b]

K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriented Thinkid§?)PSLA 1989
1-6.

G. Bracha and W. Cook, “Mixin-Based InheritandeGOOP/OOPSLA 199303-311.

D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual Programming
Environments for Generatordht. Conference Software Reud898.

D. Batory, R. Cardone, and Y. Smaragdakis, Object-Oriented Frameworks and Productikines.
Software Product-Line Conferend@enver, Colorado, August 1999.

G. Bracha and D. Griswold, “Extending Smalltalk with M|meorkshop on Extending Smalltadit
OOPSLA 1996. Sekttp://java.sun.com/people/gbracha/mwp.html

D. Batory and B.J. Geraci. Composition Validation and Subjectivity in GenVoca Generf&is,
Transactions on Software Engineerjigebruary 1997, 67-82.

T.J. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete Component R&udet.
Conf. on Softw. Reuse (ICSR ‘94)

D. Batory, C. Johnson, R. MacDonald, and D. von Heeder, "Achieving Extensibility Through Product-
Lines and Domain-Specific Languages: A Case Stutiyérnational Conference on Software Reuse
Vienna, Austria, 2000.

D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implementing Domain-Specific Languages”,
5th Int. Conf. on Softw. Reuse (ICSR ;9BEE Computer Society Press, 1998.

D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems with
Reusable Component2CM TOSEM October 1992.

G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, “Making the future safe for the past: Adding
Genericity to the Java Programming Langua@PSLA 1998

D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Librah€d,SIGSOFTL993.
S. Chiba, “Open C++ Programmer's Guide for Version 2", SPL-96-024, Xerox PARC, 1996.

L. Coglianese and R. Szymanski, “DSSA-ADAGE: An Environment for Architecture-based Avionics
Development”Proc. AGARD 1993

L. Cardelli and P. Wegner, On Understanding Types, Data Abstraction, and Polymorglusiputing
Surveys17(4): Dec 1985, 471-522.

I.R. Forman, S. Danforth, and H. Madduri, “Composition of Before/After Metaclasses in SOM”,
OOPSLA 1994

R.B. Findler and M. Flatt, “Modular Object-Oriented Programming with Units and Mixiims?",Conf.
on Functional ProgramminglL998.

M. Flatt, S. Krishnamurthi, M. Felleisen, “Classes and Mixins”. AGy¥mposium on Principles of
Programming Language4998 (PoPL 98).

E. Gamma, R. Helm, R. Johnson, and J. Vlissiddssign Patterns: Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, 1994.

James Gosling, Bill Joy, Guy L. Ste€lthe Java Language Specificatjiohddison-Wesley, Reading,
Massachusetts, 1996.

A.N. Habermann, Lawrence Flon, and Lee Cooprider, “Modularization and Hierarchy in a Family of
Operating SystemsCommunications of the ACIB(5), May 1976, 266-272.

R. Helm, I. Holland, and D. Gangopadhyay, “Contracts: Specifying Behavioral Compositions in Object-
Oriented SystemsQOPSLA 1990169-180.

I. Holland, “Specifying Reusable Components Using ContraBiSQOP 1992287-308.

William Harrison, and Harold Ossher, “Subject-Oriented Programming (A Critique of Pure Objects)”,
OOPSLA 1993411-428.

John S. Heidemann and Gerald J. Popek, “File system development with stackable lagis”,
Transactions on Computer SysteifRgbruary 1994, 58-89.

ISO/IEC revised international standard 8652:19%%a 95 Reference Manual (Language and Standard
Libraries).

Javasofflava Core Reflection Specificatjid®97. In [JavWeb].
Javasoftlava Inner Classes Specificatjd®97. In [JavWeb].

32

[JavWeb]
[JF88]

[KHO8]
[KLM *97]

[KRBI1]
[Lie96]

[LK98]

[LP97]

[MBL97]

[Mez97]
[MLO8]

[MM89]

[Mon96]
[Moo86]
[MTH90]

[NR68]

[OH92]
[OKH*95]

[OP92]
[OW97]
[Par79]

[RAB*92]

[Rea90]
[Rum94]

[SBOO]

[SB98a]

[SB98b]
[SCD*93]

JavaSoft documentation, availabléap://java.sun.com/products/jdk/1.1/docs/

R. Johnson and B. Foote, “Designing Reusable Clasdestnal of Object-Oriented Programming
1(2): June/July 1988, 22-35.

R. Keller, U. Hoelzle, “Binary Component AdaptatioECOOP 1998

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin, “Aspect-
Oriented ProgrammingEECOOP 1997220-242.

G. Kiczales, J. des Rivieres, and D. G. Bobrble Art of the Metaobject ProtocdIT Press, 1991.

K.J. LieberherrAdaptive Object-Oriented Software: The Demeter Method with Propagation Patterns
PWS Publishing Company, Boston, 1996.

C.V. Lopes and G. Kiczales, “Recent Developments in Aspe&COOP'98 Workshop Reader (Aspect-
Oriented Programming Workshq@pringer-Verlag LNCS 1543.

K.J. Lieberherr and B. Patt-Shamir, "Traversals of Object Structures: Specification and Efficient
Implementation”, College of Computer Science, Northeastern University, Tech. Report NU-CCS-97-15,
July 1997.

A. Myers, J. Bank and B. Liskov, “Parameterized Types for Java”, AGjinposium on Principles of
Programming Language4997 (PoPL 97).

M. Mezini, “Dynamic Object Evolution without Name CollisionECOOP 97 190-219.

M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play Components for Evolutionary Software
Development” OOPSLA 1998

O. L. Madsen and B. Mgller-Pedersen, “Virtual classes: A powerful mechanism in object-oriented
programming” OOPSLA 1989397-406.

T. Montlick, “Implementing Mixins in Smalltalk’The Smalltalk Reparduly 1996.
D.A. Moon, “Object-Oriented Programming with Flavor@QPSLA 1986

R. Milner, M. Tofte, and R. Harper,The Definition of Standard MLMIT Press, Cambridge,
Massachusetts and London, England, 1990.

P. Naur and B. Randall, editorSpftware Engineering: A Report on a Conference Sponsored by the
NATO Science CommitteldATO Scientific Affairs Division, Brussels, Belgium, 1968.

H. Ossher and W. Harrison, “Combination of Inheritance HierarcHiB®8PSLA 199225-40.

H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal, “Subject-Oriented Composition Rules”,
OOPSLA 1995235-250.

Sean W. O’'Malley and Larry L. Peterson. A Dynamic Network Architecturd@M Transactions on
Computer SystemMay 1992, 110-143.

M. Odersky and P. Wadler, “Pizza into Java: Translating theory into prac#g@k] Symposium on
Principles of Programming Languagek997 (PoPL 97).

David L. Parnas, “Designing Software for Ease of Extension and ContradtitifZ Transactions on
Software Engineering(2), 1979.

T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nordhagen, E. Ness-
Ulseth, G. Oftedal, A. Skaar, and P. Stenslet, “OORASS: Seamless Support for the Creation and
Maintenance of Object-Oriented Systemgfurnal of Object-Oriented Programmin(6): October

1992, 27-41.

Reasoning Systems, “Dialect User’s Guide”, Palo Alto, California, 1990.

J. Rumbaugh, “Getting Started: Using use cases to capture requirendentsial of Object-Oriented
Programming 7(5): Sep 1994, 8-23.

Y. Smaragdakis and D. BatoryMixin-Based Programming in C++”, iGGenerative and Compo-
nent-Based Software Engineering Symposium (GCEH)0. In Lecture Notes in Computer
Science (LNCS) 2177, Springer-Verlag.

Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented Compoiéntsit. Conf.
on Softw. Reuse (ICSR '9Q8tEE Computer Society Press, 1998.

Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layse©OOP 1998

P. Steyaert, W. Codenie, T. D'Hondt, K. De Hondt, C. Lucas, and M. Van Limberghen, “Nested Mixin-
Methods in Agora”’ECOOP 1993197-219.

33

[Sma99] Y. Smaragdakis, “Implementing Large-Scale Object-Oriented Components”, Ph.D. Dissertation, Dept.
of Computer Sciences, University of Texas at Austin, 1999.

[Stro7] B. StroustrupThe C++ Programming Language, 3rd Eéddison-Wesley, 1997.
[Tho97] K. Thorup, “Genericity in Java with Virtual Type&€COOP 1997444-471.

[TOHS99] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, “N degrees of separation: multi-dimensional separation
of concerns”)JCSE 1999107-119.

[Van97] M. VanHilst, “Role-Oriented Programming for Software Evolution”, Ph.D. Dissertation, University of
Washington, Computer Science and Engineering, 1997.

[Vil94] Emilia E. Villarreal. Automated Compiler Generation for Extensible Data Languag¥sD. Thesis.
Department of Computer Sciences, University of Texas at Austin, 1994.

[VN96a] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based DesigiS3ST
International Symposium on Object Technologies for Advanced SaofSgaieger-Verlag, 1996, 22-37.

[VN96b] M. VanHilst and D. Notkin, “Using Role Components to Implement Collaboration-Based Designs”.
OOPSLA 1996

[VN96c] M. VanHilst and D. Notkin, “Decoupling Change From DesighCM SIGSOFTL996.
[WC93] D. Weise and R. Crew, “Programmable Syntax Macd&M SIGPLAN Notice28(6), 1993, 156-165.

[Wei90] David M. WeissSynthesis Operational Scenaridgchnical Report 90038-N, Version 1.00.01, Software
Productivity Consortium, Herndon, Virginia, August 1990.

[Weiweb] K. Weihe, “A Software Engineering Perspective on Algorithmics” available at
http://www.informatik.uni-konstanz.de/Preprints/

[Wil93] D.S. Wile, “POPART: Producer of Parsers and Related Tools”, USC/Information Sciences Institute Tech.
Report, November 1993.

[Wir77] Niklaus Wirth, “What Can We Do about the Unnecessary Diversity of Notation for Syntactic
Definitions?”,Communications of the ACRD(11), November 1993, 822-823.

34

	Mixin Layers: An Object-Oriented Implementation Technique for Refinements and Collaboration-Based...
	Yannis�Smaragdakis
	College of Computing
	Georgia Institute of Technology
	Atlanta, GA 30332
	yannis@cc.gatech.edu
	Abstract
	Content Indicators
	1 Introduction
	2 Background: Collaboration Based Designs
	2.1 Collaborations and Roles
	Figure 1 �: Example collaboration decomposition. Ovals represent collaborations, rectangles repre...

	2.2 An Example
	Figure 2 �: Collaboration decomposition of the example application domain: A depth-first traversa...

	3 Implementing Collaboration-Based Designs with Mixin Layers
	3.1 Mixin Classes and Mixin Layers
	3.1.1 Introduction to Mixins
	3.1.2 Mixin Layers
	Figure 3 �: Mixin layers schematically.

	3.1.3 Mixin Layers in Various OO Languages
	C++
	template <class LayerSuper> class ThisMixinLayer: public LayerSuper { public: ��class FirstClass ...

	CLOS (and other reflective languages)
	Java

	3.2 Implementing Collaboration-Based Designs
	3.2.1 Using Mixin Layers
	template <class CollabSuper> class CollabThis : public CollabSuper { public: ��class FirstRole �:...
	Example
	template <class CollabSuper> class NUMBER :�public CollabSuper { public: ��class Workspace : publ...
	Figure 4 (a) : A composition implementing the vertex numbering operation
	for�(v = (Vertex*)firstNeighbor(); v != NULL;�v = (Vertex*)nextNeighbor()) �{��edgeWork(v, work...
	class NumberC : public DFT < NUMBER <�DEFAULTW�< UGRAPH > > > {}; class CycleC �: public DFT < CY...

	Multiple Collaborations in a Single Design
	typedef COMPILER < CONSADAPT < PRODCONS < �������������������PRODADAPT < PRODCONS < ..., Tree> >,...
	Figure 5 (b) : By using adaptor layers (dotted rectangles), one can emulate the inheritance hiera...

	3.2.2 Comparison to Application Frameworks
	Example

	3.2.3 Comparison to the VanHilst and Notkin Method
	Figure 6 �: Example collaboration decomposition. Ovals represent collaborations, rectangles repre...
	template <class RoleSuper, class OA, class OC> class B4 : public RoleSuper { ���... /* role imple...

	Example
	Figure 7 (a) : Our mixin layer implementation of a multiple-collaboration composition. The indivi...

	3.3 Mixin Layers Considerations

	4 An Application: The Jakarta Tool Suite
	4.1 JTS Background: Bali as a Parser Generator
	Figure 8 : A Bali Grammar for an Integer Calculator
	Figure 9 : Inferring inheritance hierarchies from grammar rules

	4.2 Bali Components and Mixin Layers in JTS
	Figure 10 : The Jak Inheritance Hierarchy

	4.3 Java Mixin Layers for JTS

	5 Related Work
	5.1 GenVoca
	5.2 Modules in High-Level Languages
	5.3 Meta-Object Protocols
	5.4 Aspect-Oriented Programming
	5.5 Adaptive OO Components
	5.6 Design Patterns for Modularization
	5.7 Subjectivity

	6 Conclusions
	References

