
ple-
ms of a
rations

(which
ge-scale
ued
ilding

[Soft-
ming;

ent-

f mod-
struc-
e, and
d func-
e bene-
larger
nd thus

e more
func-

s. In
odular-
Mixin Layers: An Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs

Abstract

A “refinement” is a functionality addition to a software project that can affect multiple dispersed im
mentation entities (functions, classes, etc.). In this paper, we examine large-scale refinements in ter
fundamental object-oriented technique called collaboration-based design. We explain how collabo
can be expressed in existing programming languages or be supported with new language constructs
we have implemented as extensions to the Java language). We present a specific expression of lar
refinements calledmixin layers, and demonstrate how it overcomes the scalability difficulties that plag
prior work. We also show how we used mixin layers as the primary implementation technique for bu
an extensible Java compiler, JTS.

Content Indicators

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures; D.2.13
ware Engineering]: Reusable Software; D.1.5 [Programming Techniques]: Object-Oriented Program
D.3.3 [Programming Languages]: Language Constructs and Features

General Terms: Design; Languages

Additional Key Words and Phrases: product-line architectures, collaboration-based design, compon
based software

1 Introduction

The history of software design and programming languages intimately evolves around the concept o
ularity. Modules encapsulate primitive functionality or services that, ideally, can be reused in the con
tion of many applications. The granularity of modules has evolved from small scale, to medium scal
now to large-scale: that is from functions, to abstract data types or classes (i.e., suites of interrelate
tions), and now more commonly to components or packages (i.e., suites of interrelated classes). Th
fits of increased module scale is that of economics—applications are easier to build from fewer and
parts—and design simplicity—applications are easier to comprehend when modules encapsulate, a
hide, irrelevant implementation details.

However, the benefits of scaled modularity are driven by reuse. The more a module is reused, th
valuable it becomes. But there is an ironic twist: the larger the module, the more specific its use and
tionality, and this, in turn, reduces the likelihood that other applications will need its exact capabilitie
other words, it seems that reuse opportunities become fewer as a module becomes larger: scaling m
ity seems to defeat the purpose of reuse, and this is exactly the opposite of what we want [Big94].

Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

yannis@cc.gatech.edu

Don Batory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
batory@cs.utexas.edu
1

ions,
psulates

odules:
ecome
es of
ossible

A
bility,
ferent
layers

ment-
el) has
e. The
icro-

e-scale
tently.
inverse
longer

ilies of
ncept,

nted
ated to
ing lan-
the Java

signs of
ions

y be
layers.
plica-
s the
ain-

ducing
nt” to

ached.
original
ition

ra-
rations)
of our
The solution to this problem lies in a very different concept of modularity, where neither entire funct
entire classes, or entire packages are the answer. Instead, the unit of modularity that we seek enca
fragmentsof multiple classes, which in turn encapsulatesfragmentsof multiple functions. An extensive
body of research has shown that such units are indeed the reusable building blocks of large-scale m
composing sets of class fragments yields a package of fully-formed classes. This recognition has b
particularly clear in the area of software product-lines, where the goal is to construct large famili
related applications from primitive and reusable components. The components that made this p
encapsulated fragments of classes.

We use the termrefinement(also in [BG98]) for any such unit of functionality in a software system.
refinement is a functionality addition to a program that introduces a conceptually new service, capa
or feature, and may affect multiple implementation entities. Various researchers have offered dif
descriptions, implementations, and names to fairly analogous concepts over the years, including

[BBG+88], collaborations [RAB+92], subjects [OH92,TOHS99] and aspects [KLM+97]. Parnas’s classic

work [Par79] has offered much of the software engineering context for these approaches.1

We believe that a prominent characteristic of successful refinement technologies is scalability. Imple
ing microscopic refinements (i.e., refinements that dealt with code fragments at the expression lev
not produced great software engineering advances in the past and is unlikely to do so in the futur
novelty of current research strikes at the core problem—that of scaling the unit of refinement from a m
scopic scale to large scale, where a single refinement alters multiple classes of an application. A larg
refinement exhibits “cross-cutting”—multiple classes must be updated simultaneously and consis
Thus, composing a few large scale refinements yields an entire application. This means that the
relationship between module size and reusability that has crippled conventional concepts no
applies, and a fresh look at software modularity has become a topic of wide-spread interest.

This paper is about modular implementations of large-scale refinements and the development of fam
related applications through refinement. In particular, we show that a fundamental object-oriented co
calledcollaboration-based designs, is in fact how large-scale refinements are expressed in object-orie
models. We begin by explaining the core ideas of collaboration-based design and how they are rel
large-scale refinements. We then show how these ideas can be expressed in existing programm
guages, or supported with new language constructs (which we have implemented as extensions of
language). In particular, we introduce a specific expression of large-scale refinements calledmixin layers,
and demonstrate how it extends and overcomes problems of prior work on the refinement-based de
VanHilst and Notkin [VN96a-c, Van97] and application frameworks [JF88]. Mixin layers implementat
are discussed, but our paper intends to convince the reader that oneshould implement programs using
mixin layers, not that oneis merely able todo so. Better implementations than the ones we propose ma
possible, or languages other than the ones we examine may offer more complete support for mixin
In either case, this would be independent from our main argument which is one of desirability of ap
tion development through mixin layers. As a practical validation, we show how we used mixin layers a
primary implementation technique in a medium-size project: the JTS tool suite for implementing dom

1. The definition of “refinement” that seems closest to our intended meaning is “the act of making improvement by intro
subtleties or distinctions” (Merriam-Webster’s Dictionary). Formal approaches to programming use the term “refineme
denote the elaboration of a program by adding more implementation detail until a fully concrete implementation is re
The set of behaviors (i.e., the legal variable assignments) of a “refined” program is a subset of the behaviors of the
“unrefined” program. This appears to be different from our use of the term. Our “refinements” follow the dictionary defin
by adding “subtleties or distinctions” at thedesignlevel. At the implementation level, however, a refinement can yield d
matic changes: both the exported functionality (semantics of operations) and the exported interface (signatures of ope
may change. Thus, unlike the use of “refinement” in formal approaches to programming, the set of allowed behaviors
“refined” program might not be a subset of the behaviors of the “unrefined” program.
2

ents of

l92,

e-case

gh an
bjects

. A
these

ed the
ions
tion of
art of an
e in a

y inde-
ign
ross-
., a
ed in a

right
d will

single
er rela-

t) two
ation
ing dif-
object
pective

differ-
-

bora-
specific languages. Our experience shows that the mechanism is versatile and can handle refinem
substantial size.

2 Background: Collaboration Based Designs

Collaboration-basedor role-baseddesigns have been the subject of many papers [BC89, HHG90, Ho

RAB+92, VN96a]. The concept may have originated with Reenskaug, et al. [RAB+92] but the ideas have

been used in various forms, often without being named (e.g., [BBG+88]). A good introduction to collabo-

ration-based design can be found in the presentation of the OORAM approach [RAB+92]. A detailed treat-
ment of collaboration-based designs, together with a discussion of how to derive them from us
scenarios [Rum94] can be found in VanHilst’s Ph.D. dissertation [Van97].

2.1 Collaborations and Roles

In an object-oriented design, objects are encapsulated entities but are rarely self-sufficient. Althou
object is fully responsible for maintaining the data it encapsulates, it needs to cooperate with other o
to complete a task. An interesting way to encode object interdependencies is through collaborationscol-
laboration is a set of objects and a protocol (i.e., a set of allowed behaviors) that determines how
objects interact. The part of an object enforcing the protocol that a collaboration prescribes is call
object’srole in the collaboration. Objects of an application generally participate in multiple collaborat
simultaneously and, thus, may encode several distinct roles. Each collaboration, in turn, is a collec
roles, and represents relationships across corresponding objects. Essentially, a role isolates the p
object that is relevant to a collaboration from the rest of the object. Different objects can participat
collaboration, as long as they support the required roles.

In collaboration-based design, the objective is to express an application as a composition of largel
pendently-definable collaborations.Viewed in terms of design modularity, collaboration-based des
acknowledges that a unit of functionality (module) is neither a whole object nor a part of it, but can c
cut several different objects. If a collaboration is reasonably independent of other collaborations (i.e
good approximation of an ideal module) the benefits are great. First, the collaboration can be reus
variety of circumstances where the same functionality is needed, by just mapping its roles to the
objects. Second, any changes in the encapsulated functionality will only affect the collaboration an
not propagate throughout the whole application.

In abstract terms, a collaboration is a view of an object-oriented design from the perspective of a
concern, service, or feature. For instance, a collaboration can be used to express a producer-consum
tionship between two communicating objects. Clearly, this collaboration prescribes roles for (at leas
objects and there is a well-defined “protocol” for their interactions. Interestingly, the same collabor
could be instantiated more than once in a single object-oriented design, with the same objects play
ferent roles in every instantiation. In the example of the producer-consumer collaboration, a single
could be both a producer (from the perspective of one collaboration) and a consumer (from the pers
of another).

Figure 1 depicts the overlay of objects and collaborations in an abstract application involving three
ent objects (OA, OB, OC), each supporting multiple roles. ObjectOB, for example, encapsulates four dis
tinct roles:B1, B2, B3, andB4. Four different collaborations (c1, c2, c3, c4) capture distinct aspects of the
application’s functionality. Each collaboration prescribes roles to certain objects. For example, colla
tion c2 contains two distinct roles,A2 andB2, which are assumed by distinct objects (namelyOA andOB).
An object does not need to play a role in every collaboration—for instance,c2 does not affect objectOC.
3

pile-
by an
to dif-
gener-

rates a
odi-

so
ns

ex one.
any pro-

versal
tkin
ased
ferent

d
ation
cking,

node
fic
Collaborations can be composed dynamically at application run-time or statically at application com
time. In this paper, we examine the static composition of collaborations, where roles that are played
object are uniquely determined by its class. For instance, in Figure 1, all three objects must belong
ferent classes (since they all support different sets of roles). The work described in this paper can be
alized to dynamic compositions of collaborations.

From a broader perspective, a collaboration is a large-scale refinement. Again, a refinement elabo
program to extend its functionality or to add implementation details. A refinement is large scale if it m
fies multiple classes of an application. For example, when collaborationc4 is (statically) added to the pro-
gram of Figure 1, the classes for objectsOA, OB, andOC are updated consistently and simultaneously
that the “feature” or “service” defined byc4 is appropriately implemented. Thus, composing collaboratio
is an example of refinement, where a simple program is progressively elaborated into a more compl
Collaborations are large-scale and reusable refinements—they can be used in the construction of m
grams.

2.2 An Example

As a running example that illustrates important points of our discussion, we consider a graph tra
application that was examined initially by Holland [Hol92] and subsequently by VanHilst and No
[VN96a]. Doing so affords not only a historical perspective on the development of collaboration-b
designs, but also a perspective on the contribution of this work. The application defines three dif
operations (algorithms) on an undirected graph, all based on depth-first traversal:Vertex Numberingnum-
bers all nodes in the graph in depth-first order,Cycle Checkingexamines whether the graph is cyclic, an
Connected Regionsclassifies graph nodes into connected graph regions. That is, a client of this applic
can instantiate a graph and separately invoke algorithms that perform vertex numbering, cycle che
and/or find connected regions on a graph. The application itself has three distinct classes:Graph, Vertex,
andWorkspace. TheGraphclass describes a container of nodes with the usual graph properties. Each
is an instance of theVertexclass. Finally, theWorkspaceclass includes the application part that is speci
to each graph operation. For example, theWorkspaceobject for aVertex Numberingoperation holds the
value of the last number assigned to a vertex as well as the methods to update this number.

Figure 1 : Example collaboration decomposition. Ovals represent collaborations, rectan-
gles represent objects, their intersections represent roles.

Object Classes

Role A1
C

ol
la

bo
ra

tio
ns

 (
La

ye
rs

) Collaboration
c1

Collaboration
c2

Collaboration
c3

Collaboration
c4

Object OA Object OB Object OC

Role B1

Role A2 Role B2

Role B3 Role C3

Role C4Role A4

Role C1

Role B4
4

collab-

an
s, for

ro-
the first
ly pro-
al col-

t time
es.

first tra-
nd pre-
s and a
codes

ct in
ar-

etween
ave no
In decomposing this application into collaborations, we need to capture distinct aspects as separate
orations. A decomposition of this kind is straightforward and results in five distinct collaborations.

One collaboration (Undirected Graph) encapsulates properties of an undirected graph. This is clearly
independent aspect of the application—the problem could very well be defined for directed graph
trees, etc.

Another collaboration (Depth First Traversal) encapsulates the specifics of depth-first traversals and p
vides a clean interface for extending traversals. That is, at appropriate moments during a traversal (
time a node is visited, when an edge is followed, and when a subtree rooted at a node is complete
cessed) control is transferred to specialization methods that can obtain information from the travers
laboration and supply information to it. Consider theVertex Numberingoperation as a refinement of a
depth-first traversal. Numbering is realized by specializing the action when visiting a node for the firs
during a traversal. The action assigns a number to the node and increases the count of visited nod

Using this approach, each of the three graph operations can be seen as a refinement of a depth-
versal and each can be expressed by a single collaboration. Figure 2 is reproduced from [VN96a] a
sents the collaborations and classes of our example application domain. The intersection of a clas
collaboration in Figure 2 represents the role prescribed for that class by the collaboration. A role en
the part of an object that is specific to a collaboration. For instance, the role of aGraphobject in the “Undi-
rected Graph” collaboration supports storing and retrieving a set of vertices. The role of the same obje
the “Depth First Traversal” collaboration implements a part of the depth-first traversal algorithm. (In p
ticular, it contains a method that initially marks all vertices of a graphnot-visitedand then calls the method
for depth-first traversal on each graph vertex object).

The goal of a collaboration-based design is to encapsulate within a collaboration all dependencies b
classes that are specific to a particular service or feature. In this way, collaborations themselves h
outside dependencies and can be reused in a variety of circumstances. The “Undirected Graph” collabora-
tion, for instance, encodes the properties of an undirected graph (pertaining to theGraph and Vertex

Figure 2 : Collaboration decomposition of the example application domain: A depth-first
traversal of an undirected graph is specialized to yield three different graph operations.
Ovals represent collaborations, rectangles represent classes.

Object Classes

GraphUndirected
C

ol
la

bo
ra

tio
ns

 (
La

ye
rs

)
Undirected
Graph

Depth First
Traversal

Vertex
Numbering

Cycle
Checking

Connected
Region

Graph Vertex Workspace
VertexWith
Adjacencies

GraphDFT VertexDFT

VertexNumber WorkspaceNumber

VertexCycle WorkspaceCycleGraphCycle

GraphConnected VertexConnected Workspace
Connected
5

lication
ould
ance, it
d

lication
e after
ugh to
algo-

ns are

y to see
opera-
makes
ilies of
ilies,

methods
built-in
ritance
signs.

nt to
and not

ech-
ontext
d as

lasses of
-

we use

t spec-
have a

ified at
classes, as well as the interactions between objects of the two). Thus, it can be reused in any app
that deals with undirected graphs. Ideally, if we could define an “interface” to a collaboration, we sh
also be able to easily replace one collaboration with another that exports the same interface. For inst
would be straightforward to replace the “Undirected Graph” collaboration with one representing a directe
graph, assuming that both collaborations exported the same interface.

Of course, simple interface conformance does not guarantee composition correctness—the app
writer must ensure that the algorithms used (for example, the depth-first traversal) are still applicabl
the change. The algorithms presented by Holland [Hol92] for this example are, in fact, general eno
be applicable to a directed graph. If, however, a more efficient, specialized-for-undirected-graphs
rithm was used (as is, for instance, possible for theCycle Checkingoperation) the change would yield
incorrect results. [Sma99, SB98b, BG98] discuss in detail the issue of ensuring that collaboratio
actually interchangeable.

Although we have focussed on a single application that supports all three graph operations, it is eas
how variants of this application could be created (e.g., by omitting some operations or adding new
tions), where each variant would be described by the use of different collaborations. This very fact
collaboration-based designs ideal for describing product-line architectures, that is, designs for fam
related applications. As we will see, collaborations define the building blocks for application fam
compositions of these building blocks yields different product-line members.

3 Implementing Collaboration-Based Designs with Mixin Layers

3.1 Mixin Classes and Mixin Layers

A refinement of an object-oriented class is encapsulated by a subclass: a subclass can add new
and data members, as well as override existing methods of its superclass. Thus, inheritance is a
mechanism for statically refining classes in object-oriented languages. The challenge is to scale inhe
from refining individual classes to expressing the large-scale refinements of collaboration-based de

A solution is to build on an existing object-oriented construct called amixin. Mixins are similar to classes
but with some added flexibility, as described shortly. Unfortunately, mixins alone are not sufficie
express large-scale refinements—they suffer from only being able to refine a single class at a time
a collection of cooperating classes. To address this, we introducemixin-layers: a scaled-up form of mixins
that can contain multiple smaller mixins.

3.1.1 Introduction to Mixins

The termmixin class(or just “mixin”) has been overloaded to mean several specific programming t
niques and a general mechanism that they all approximate. Mixins were originally explored in the c
of the Lisp language with object-systems like Flavors [Moo86] and CLOS [KRB91]. They were define
classes that allow their superclass to be determined bylinearizationof multiple inheritance. In C++, the
term has been used to describe classes in a particular (multiple) inheritance arrangement: as superc
a single class that themselves have a commonvirtual base class(see [Str97], p.402). Both of these mecha
nisms are approximations of a general concept described by Bracha and Cook [BC90], and here
“mixin” in this general sense.

The main idea of mixins is simple: in object-oriented languages, a superclass can be defined withou
ifying its subclasses. This property is not, however, symmetric: when a subclass is defined, it must
specific superclass. Mixins (also commonly known asabstract subclasses[BC90]) represent a mechanism
for specifying classes that eventually inherit from a superclass. This superclass, however, is not spec
6

yield-
xten-

class, it

ed by a

mple,
of
simple
This

ave the
s, like
rtain

create

i-

res, our
tructor
l-
adability
the site of the mixin’s definition. Thus a single mixin can be instantiated with different superclasses
ing widely varying classes. This property makes them appropriate for defining uniform incremental e
sions for a multitude of classes. When a mixin is instantiated with one of these classes as a super
produces a class incremented with the additional behavior.

Mixins can be implemented using parameterized inheritance: it is a class whose superclass is specifi
parameter. Using C++ syntax we can write a mixin as:

template <class Super> class Mixin : public Super {
... /* mixin body */

} ;

Mixins are flexible and can be applied in many circumstances without modification. To give an exa
consider a mixin implementingoperation countingfor a graph. Operation counting means keeping track
how many nodes and edges have been visited during the execution of a graph algorithm. (This
example is one of the non-algorithmic refinements to algorithm functionality discussed in [WeiWeb]).

mixin could have the form:2

template <class Graph> class Counting : public Graph {
int nodes_visited, edges_visited;

public:
Counting() : Graph() { nodes_visited = edges_visited = 0; }

node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}

edge succ_edge (edge e) {
edges_visited++;
return Graph::succ_edge(e);

}

// example method that displays the cost of an algorithm in
// terms of nodes visited and edges traversed
void report_cost () {

cout << “The algorithm visited ” << nodes_visited <<
“ nodes and traversed ” << edges_visited <<
“ edges\n”;

}
... // other methods using this information may exist

} ;

By expressing operation counting as a mixin we ensure that it is applicable to many classes that h
same interface (i.e., many different kinds of graphs). Clearly, the implicit assumption is that classe
Dgraph andUgraph , have been designed so that they export similar interfaces. By standardizing ce
aspects of the design, like the method interfaces for different kinds of graphs, we gain the ability to

mixin classes that can be reused in different occasions.3 We can, for instance, use two different compos
tions:

2. We use C++ syntax for most of the examples of this section, in the belief that concrete syntax clarifies, rather than obscu
ideas. To facilitate readers with limited C++ expertise, we avoid several cryptic idioms or shorthands (for instance, cons
initializer lists are replaced by assignments, we do not use thestruct keyword to declare classes, etc.). A convention fo
lowed in our code fragments is that class declarations and their syntactic delimiters are highlighted. This enhances re
in later sections, where classes are nested.
7

s to the
pect:

e meth-

mixins.

xin is
ters

ix-

layer
th-

rs of
ne lan-
bination
t. The

in this
OSW98]
a and GJ
typedef Counting < Ugraph > CountedUgraph ;

and
typedef Counting < Dgraph > CountedDgraph ;

to define a counted undirected graph type and a counted directed graph type. (We omit parameter
graph classes for simplicity.) Note that the behavior of the composition is exactly what one would ex
any methods not affecting the counting process are exported (inherited from the graph classes). Th
ods that do need to increase the counts are “wrapped” in the mixin.

3.1.2 Mixin Layers

To implement entire collaborations as components we need to use mixins that encapsulate other
We call the encapsulated mixin classesinner mixins, and the mixin that encapsulates them theouter mixin.
Inner mixins can be inherited, just like any member variables or methods of a class. An outer mi
called amixin layer when the parameter (superclass) of the outer mixin encapsulates all parame

(superclasses) of inner mixins.4 This is illustrated in Figure 3.ThisMixinLayer is a mixin that refines
(through inheritance)SuperMixinLayer . SuperMixinLayer encapsulates three classes:FirstClass , Sec-

ondClass , andThirdClass . ThisMixinLayer also encapsulates three inner classes. Two of them are m
ins that refine the corresponding classes ofSuperMixinLayer , while the third is an entirely new class.

Note that inheritance works at two different levels. First, a layer can inherit inner classes from the
above it (for instance,ThirdClass in Figure 3). Second, the inner mixins inherit member variables, me
ods, or other classes from their superclass.

3.1.3 Mixin Layers in Various OO Languages

The mixin layer concept is quite general and is not tied to any particular language idiom. Many flavo
the concept, however, can be expressed via specific programming language idioms: as stand-alo
guage constructs, as a combination of C++ nested classes and parameterized inheritance, as a com
of CLOS class-metaobjects and mixins, etc. We examine some of these different realizations nex

3. Stated another way, a mixin defines a refinement of a class, but this refinement is not meaningful foreverypossible class. Stan-
dardized interfaces is a way to type or restrict the set of classes that a mixin can meaningfully refine. C++ syntax,
regard, is unsatisfactory because C++ templates have untyped parameters. Languages like Pizza [OW97] or GJ [B
offer a better mechanism, where class parameters are typed by the interfaces that they implement. Unfortunately, Pizz
do not support parameterized inheritance.

4. Inner mixins can themselves be mixin layers.

SuperMixinLayer

ThisMixinLayer

FirstClass SecondClass ThirdClass
innerouter

FirstClass SecondClass

classesclasses

Legend

inheritance
among inner
classes

inheritance
among outer
classes

Figure 3 : Mixin layers schematically.

FourthClassThirdClass
(inherited)
8

ection

sed for
ke them
mmon
express

n
l inner
ses. If

s
of all

he
ther in

tation
d inherit-
other

ve
lack of
CLOS
class
wo ver-

al test-

ns and
tion

In this
introduction of technical detail is necessary at this point as it helps us demonstrate concretely, in S
3.2, the advantages of mixin layers for implementing collaboration-based designs.

C++. We would like to support mixin layers in C++ using the same language mechanisms as those u
mixin classes. To do this, we can standardize the names used for inner class implementations (ma
the same for all layers). This yields an elegant form of mixin layers that can be expressed using co
C++ features. For instance, using C++ parameterized inheritance and nested classes, we can
ThisMixinLayer as a mixin layer (see again Figure 3) with two inner mixins (FirstClass and
SecondClass) and one additional class (FourthClass):

template <class LayerSuper>
class ThisMixinLayer : public LayerSuper {
public:

class FirstClass : public LayerSuper::FirstClass { ... } ;
class SecondClass : public LayerSuper::SecondClass { ... } ;
class FourthClass { ... } ;
...

} ; (1)

The code fragment (1) represents the form of mixin layers that we use in the examples of this sectio. Note
that specifying a parameter for the outermost mixin automatically determines the parameters of al
mixins. Composing mixin layers to form concrete classes is now as simple as composing mixin clas
we have four mixin layers (Layer1 , Layer2 , Layer3 , Layer4), we can compose them as:

Layer4 < Layer3 < Layer2 < Layer 1 > > >

where “<...> ” is the C++ operator for template instantiation. Note thatLayer1 has to be a concrete clas
(i.e., not a mixin class). Alternatively we can have a class with empty inner classes that is the root
compositions. (A third alternative is to use afixpointconstruction and instantiate the topmost layer with t
result of the entire composition! This pattern has several desirable properties and is analyzed fur
Chapter 3 of [Sma99].)

In code fragment (1) we mapped the main elements of the mixin layer definition to specific implemen
techniques. We used nested classes to implement class encapsulation. We also used parameterize
ance to implement mixins. However, there are very different ways of encoding the same concept in
languages.

CLOS (and other reflective languages).We can encode mixin layers in CLOS [KRB91] (and other reflecti
systems) by simulating their main elements using reflection (classes as first-class entities). Due to
space, we elide the implementation specifics. A discussion can be found in [SB98b] and [Sma99].
mixin layers are not semantically equivalent to C++ mixin layers (for instance, there is no default
data hiding: class members are by default accessible from other code in CLOS). Nevertheless, the t
sions of mixin layers are just different flavors of the same idea.

Our ideas are applicable to other reflective languages. Smalltalk, in particular, has been a tradition

bed for mixins, both for researchers (e.g., [BG96, Mez97, SCD+93]) and for practitioners [Mon96]. A
straightforward (but awkward) way to implement mixins in Smalltalk is asclass-functors; that is, mixins
can be functions that take a superclass as a parameter and return a new subclass.

Java.The Java language is an obvious next candidate for mixin layers. Java has no support for mixi
it is unlikely that the core language will include mixins in the near future. As will be described in Sec
4, we extended the Java language with constructs that capture mixins and mixin layers explicitly.
9

e sys-
ch the

ixin

98]
t as it
sed in
eteriza-
rts

echa-

e case
ss (see
ized
inher-

lan-
o types

meter-

lemen-
res to
works
ploys

sed as

as in C++
er mem-
effort we used our JTS set of tools [BLS98] for creating compilers for domain-specific languages. Th
tem supports mixins and mixin layers through parameterized inheritance and class nesting, in mu

same way as in C++.5 Additionally, the fundamental building blocks of JTS itself were expressed as m
layers, resulting in an elegant bootstrapped implementation. More on JTS in Section 4.

Adding mixins to Java is also the topic of other active research [AFM97, FKF98]. The work of [FKF
presented a semantics for mixins in Java. This is particularly interesting from a theoretical standpoin
addresses issues of mixin integration in a type-safe framework. As we saw, mixins can be expres
C++ using parameterized inheritance. There have been several recent proposals for adding param
tion/genericity to Java [AFM97, OW97, BOSW98, MBL97, Tho97], but only the first [AFM97] suppo
parameterized inheritance and, hence, can express mixin layers.

It is interesting to examine the technical issues involved in supporting mixins in Java genericity m
nisms. Three of these mechanisms [OW97, BOSW98, Tho97] are based on ahomogeneousmodel of trans-
formation: the same code is used for different instantiations of generics. This is not applicable in th
of parameterized inheritance—different instantiations of mixins are not subclasses of the same cla
[AFM97] for more details). Additionally, there may be conceptual difficulties in adding parameter
inheritance capabilities: the genericity approach of [Tho97] is based on virtual types. Parameterized
itance can be approximated with virtual types by employingvirtual superclasses[MM89], but this is not
part of the design of [Tho97].

The approaches of Myers et al. [MBL97] and Agesen et al. [AFM97] are conceptually similar from a
guage design standpoint. Even though parameterized implementations do not directly correspond t
in the language (in the terminology of [CW85] they correspond totype operators), parameters can be
explicitly constrained. This approach, combined with aheterogeneousmodel of transformation (i.e., one
where different instantiations of generics yield separate entities) is easily amenable to adding para
ized inheritance capabilities, as was demonstrated in [AFM97].

3.2 Implementing Collaboration-Based Designs

Given the mixin layer concept, we can now express collaboration-based designs directly at the imp
tation level. We show how mixin layers can be used to perform the task and examine how it compa
two previous approaches. One is the straightforward implementation technique of application frame
[JF88] using just objects and inheritance. The other is the technique of VanHilst and Notkin that em
C++ mixins to express individual roles.

3.2.1 Using Mixin Layers

A collaboration can be expressed by a mixin layer. The roles played by different objects are expres
nested classes inside the mixin layer. The general pattern is:

5. The Java 1.1 additions to the language [Jav97b] support nested classes and interfaces (actually both “nested” classes
andmemberclasses—where nesting has access control implications). Nested classes can be inherited just like any oth
bers of a class.
10

es two

t

compo-
r-
e term
class
e-

d as a

for the

on the

plate

discussed
template <class CollabSuper>
class CollabThis : public CollabSuper {
public:

class FirstRole : public CollabSuper::FirstRole { ... } ;
class SecondRole : public CollabSuper::SecondRole { ... } ;
class ThirdRole : public CollabSuper::ThirdRole { ... } ;
... // more roles

} ; (2)

Again, mixin layers are composed by instantiating a layer with another as its parameter. This produc
classes that are linked as a parent-child pair in the inheritance hierarchy. For four mixin layers,Collab1 ,
Collab2 , Collab3 , FinalCollab of the above form, we can define a classT that expresses the final produc
of the composition as:

typedef Collab1 < Collab2 < Collab3 < FinalCollab > > > T ;

or (alternatively):

class T : public Collab1 < Collab2 < Collab3 < FinalCollab > > > { /* empty body */ } ;

In this paper, we consider these two forms to be equivalent.6

The individual classes that the original design describes are members (nested classes) of the above
nents. Thus,T::FirstRole defines the application classFirstRole , etc. Note that classes that do not pa
ticipate in a certain collaboration can be inherited from collaborations above (we subsequently use th
“collaboration” for the mixin layer representing a collaboration when no confusion can result). Thus,
T::FirstRole is defined even ifCollab1 (the bottom-most mixin layer in the inheritance hierarchy) pr
scribes no role for it.

Example.Consider the graph traversal application of Section 2.2. Each collaboration is represente
mixin layer. Vertex Numbering, for example, prescribes roles for objects of two different classes:Vertex
andWorkspace. Its implementation has the form:

template <class CollabSuper> class NUMBER : public CollabSuper {
public:

class Workspace : public CollabSuper::Workspace {
... // Workspace role methods
} ;

class Vertex : public CollabSuper::Vertex {
... // Vertex role methods
} ;

} ; (3)

Note how the actual application classes are nested inside the mixin layer. For instance, the roles
Vertex and Workspaceclasses of Figure 1 correspond toNUMBER::Vertex and NUMBER::Workspace ,
respectively. Since roles are encapsulated, there is no possibility of name conflict. Moreover, we rely
standardization of role names. In this example the namesWorkspace , Vertex , andGraph are used for roles
in all collaborations. Note how this is used in code fragment (3): Any class generated by this tem
defines roles that inherit from classesWorkspace andVertex in its superclass (CollabSuper).

6. There are differences, but these are a consequence of C++ policies and are not important for our discussion (they are
together with other C++ specific issues in [Sma99], Chapter 3).
11

have a

alled

mic

works

pro-
sed to
nt

th first
bering

e how
e com-

and
rits from

s

Other collaborations of our Section 2.2 design are similarly represented as mixin layers. Thus, we
DFT and aUGRAPHcomponent that capture theDepth-First TraversalandUndirected Graphcollaborations
respectively. For instance, methods in theVertex class of theDFT mixin layer includevisitDepthFirst

and isVisited (with implementations as suggested by their names). Similarly, methods in theVertex

class ofUGRAPHinclude addNeighbor , firstNeighbor , and nextNeighbor , essentially implementing a
graph as an adjacency list.

To implement default work methods for the depth-first traversal, we use an extra mixin layer, c
DEFAULTW. TheDEFAULTWmixin layer provides the methods for theGraph andVertex classes that can be
overridden by any graph algorithm (e.g.,Vertex Numbering) used in a composition.

template <class CollabSuper> class DEFAULTW : public CollabSuper {
public:

class Vertex : public CollabSuper::Vertex {
protected:

bool workIsDone(CollabSuper::Workspace*) {return 0;}
void preWork(CollabSuper::Workspace*) {}
void postWork(CollabSuper::Workspace*) {}
void edgeWork(Vertex*, CollabSuper::Workspace*) {}

} ;

class Graph : public CollabSuper::Graph {
protected:

void regionWork(Vertex*, CollabSuper::Workspace*) {}
void initWork(CollabSuper::Workspace*) {}
bool finishWork(CollabSuper::Workspace*) {return 0;}

} ;
} ;

The introduction ofDEFAULTW(as a component separate fromDFT) is an implementation detail, borrowed
from the VanHilst and Notkin implementation of this example [VN96a]. Its purpose is to avoid dyna
binding and enable multiple algorithms to be composed as separate refinements of more than oneDFTcom-
ponent. This topic is discussed in detail during the comparison of mixin layers and application frame
(Section 3.2.2).

With the collaboration entities of the original design represented as distinct mixin layers, it is easy to
duce an entire application by composing collaborations. In fact, the mixin layers defined can be u
implement aproduct-line: a family of related applications. Different compositions of layers yield differe
products (members) of the family. In our example, the building blocks are the undirected graph, dep
traversal, etc. collaborations. We show the collaborations that are composed to build the vertex num
graph application in Figure 4(a). We will soon explain what this composition means but first let us se
the different classes are related. The final implementation classes are members of the product of th
position,NumberC (e.g.,NumberC::Graph is the concrete graph class). Figure 4 shows the mixin layers
their member classes, which represent roles, as they are actually composed. Each component inhe
the one above it. That is,DFT inherits role-members fromNUMBER, which inherits fromDEFAULTW, which
inherits fromUGRAPH. At the same time,DFT::Graph inherits methods and variables fromNUMBER::Graph ,
which inherits fromDEFAULTW::Graph , which inherits fromUGRAPH::Graph . This double level of inherit-
ance is what makes the mixin-layer approach so powerful. For instance, even thoughNUMBERdoes not
specify aGraph member, it inherits one fromDEFAULTW. The simplicity that this design affords become
apparent in the following sections, when we compare it with alternatives.
12

a ver-

aversal
ific
re
ve yet
by the

ssed in

pplica-
The interpretation of the composition in Figure 4 is straightforward. It expresses the development of
tex numbering application as a series of refinements. One begins with theUGRAPHmixin layer that imple-
ments an undirected graph. Next, default classes and methods that are common to all graph tr
algorithms are added by the mixin layerDEFAULTW. Then the algorithms and data members that are spec
for vertex numbering are introduced by theNUMBERmixin layer. These algorithms, by themselves, a
insufficient for performing vertex numbering because they rely on graph search algorithms which ha
to be added. Finally, the graph search algorithms—in this case, depth first search—are grafted on
DFT mixin layer thereby completing the specification and implementation of this application.

Thus, every mixin layer exceptUGRAPHis implemented in terms of the ones above it. For instance,DFT is
implemented in terms of methods supplied byNUMBER, DEFAULTW, andUGRAPH. An actual code fragment
from thevisitDepthFirst method implementation inDFT::Vertex is the following:

for (v = (Vertex*)firstNeighbor(); v != NULL; v = (Vertex*)nextNeighbor())
{ edgeWork(v, workspace);

v->visitDepthFirst(workspace); } (4)

The firstNeighbor , nextNeighbor , andedgeWork methods are not implemented by theDFT component.
Instead they are inherited from components above it in the composition.firstNeighbor andnextNeigh-

bor are implemented in theUGRAPHcomponent (as they encode the iteration over nodes of a graph).edge-

Work is a traversal refinement and (in this case) is implemented by theNUMBER component.

We can now see how mixin layers are both reusable and interchangeable. TheDFT component of Figure 4
is oblivious to theimplementationsof methods in components above it. Instead,DFT only knows theinter-
faceof the methods it expects from its parent. Thus, the code of (4) represents a skeleton expre
terms of abstract operationsfirstNeighbor , nextNeighbor , andedgeWork . Changing the implementation
of these operations merely requires the swapping of mixin layers. For instance, we can create an a
tion (CycleC) that checks for cycles in a graph by replacing theNUMBER component withCYCLE:

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC;

Figure 4(a) : A composition implementing the vertex numbering operation

UGRAPH

DFT

NUMBER

Classes of participating objects

Graph Vertex Workspace

DEFAULTW

Figure 4(b) : Mixin-layers (ovals) and role-members (rectangles inside ovals) in the com-
position. Every component inherits from the one above it. Shaded role-members are those
contained in the collaboration, unshaded are inherited. Arrows show inheritance relation-
ships drawn from subclass to superclass.
13

as

te,

able
posi-

of the
h algo-
rm

a

ctly,

stance,

cted

undi-
with the

s the

all dif-
le the

ropri-
er of

llabora-
angeabil-
typedef DFT < CYCLE < DEFAULTW < UGRAPH > > > CycleC;

The results of compositions (CycleC above andNumberC in Figure 4(a)) can be used by a client program
follows: First, an instance of the nestedGraph class (NumberC::Graph or CycleC::Graph) needs to be cre-
ated. Then,Vertex objects are added and connected in the graph (theGraph role in mixin-layerUGRAPH

defines methodsaddVertex andaddEdge for this purpose). After the creation of the graph is comple
calling methoddepthFirst on it executes the appropriate graph algorithm.

Mixin layers are the building blocks of a graph application product-line. Each mixin layer is a reus
component and different members (i.e., products) of the family can be created by using different com
tions of mixin layers. Note that no direct editing of the component is necessary and multiple copies
same component can co-exist in the same composition. For instance, we could combine two grap
rithms by using two instances of theDFTmixin layer (in the same inheritance hierarchy), refined to perfo
a different operation each time:

class NumberC : public DFT < NUMBER < DEFAULTW < UGRAPH > > > {} ;
class CycleC : public DFT < CYCLE < NumberC > > {} ; (5)

Both algorithms can be invoked, depending on whether we access the depth-first traversal throughNum-

berC or aCycleC reference:

CycleC::Graph *graph_c = new CycleC::Graph();
NumberC::Graph *graph_n = graph_c;

Now a call tograph_c->depth_first invokes the cycle checking algorithm, while a call tograph_n-

>depth_first calls the vertex numbering algorithm. (Alternatively, we can qualify method names dire
e.g.,graph_c->NumberC::Graph::depth_first(...) .)

As another example, the design may change to accommodate a different underlying model. For in
operations could now be performed on directed graphs. The corresponding update (DGRAPHreplaces
UGRAPH) to the composition is straightforward (assuming that the algorithms are still valid for dire
graphs as is the case with Holland’s original implementation of this example [Hol92]):

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC;

Again,note that the interchangeability property is a result of the independence of collaborations.7 A single
UGRAPHcollaboration completely incorporates all parts of an application that relate to maintaining an
rected graph (although these parts span several different classes). The collaboration communicates
rest of the application through a well-defined and usually narrow interface.

For this and other similar examples, the reusability and interchangeability of mixin layers solve
library scalability problem[BSST93, Big94]: there aren features and often more thann! valid combina-
tions (because composition order matters and feature replication is possible [BO92]). Hard-coding
ferent combinations leads to libraries of exponential size: the addition of a single feature can doub
size of a library. Instead, we would like to have a collection of building blocks and compose them app
ately to derive the desired combination. In this way, the size of the library grows linearly in the numb
features it can express (instead of exponentially, or super-exponentially).

7. By “independence” we mean that collaborations are composable because they conform to a particular design—all co
tions use Graph, Vertex, and Workspace classes with standardized methods. Given this standardization, the interch
ity—or independence—of these collaborations is achieved.
14

to
ith the

t can be
t can
direct”

.1. Our
tokens
x trees
tion to
of the

uced-
n layer
d or

-

in
ing
Multiple Collaborations in a Single Design.An interesting question is whether mixin layers can be used
express collaboration-based designs where a single collaboration is instantiated more than once w
same class playing different roles in each instantiation. The answer is positive, and the desired resul
effected usingadaptormixin layers. Adaptor layers add no implementation but adapt a class so that i
play a pre-defined role. That is, adaptor layers contain classes with empty bodies that are used to “re
the inheritance chain so that predefined classes can play the required roles.

Consider the case of a producer-consumer collaboration, which was briefly discussed in Section 2
example is from the domain of compilers. A parser in a compiler can be viewed as a consumer of
produced by a lexical analyzer. At the same time, however, a parser is a producer of abstract synta
(consumed, for instance, by an optimizer). We can reuse the same producer-consumer collabora
express both of these relationships. The reason for wanting to provide a reusable implementation
producer-consumer functionality is that it could be quite complex. For instance, the buffer for prod
consumed items may be guarded by a semaphore, multiple consumers could exist, etc. The mixi
implementing this collaboration takesItem as a parameter, describing the type of elements produce
consumed:

template <class CollabSuper, class Item>
class PRODCONS : public CollabSuper {
public:

class Producer : public CollabSuper::Producer {
void produce(Item item) { ... }
// The functionality of producing Items is defined here
... // other Producer role methods

} ;

class Consumer : public CollabSuper::Consumer {
Item consume() { ... }
// The functionality of consuming Items is defined here
... // other Consumer role methods

} ;
} ;

That is,PRODCONSadds the generic “produce” functionality to theProducer class and adds generic “con
sumer” functionality to theConsumer class.

Now we can use two simple adaptors to make a single class (Parser) be both a producer and a consumer
two different collaborations. The first adaptor (PRODADAPT) expresses the facts that a producer is also go
to be a consumer (the actual consumer functionality is to be added later) and that theOptimizer class
inherits the existing consumer functionality. This adaptor is shown below:

template <class CollabSuper> class PRODADAPT : public CollabSuper {
public:

class Consumer : public CollabSuper::Producer { } ;
class Optimizer : public CollabSuper::Consumer { } ;
class Producer { } ;

} ;

The second adaptor (CONSADAPT) is similar:
15

r

es
cer-

the
emulat-
mpo-

ate
ommon

are in a
t class.
d
ve the

ave the
lasses.
nd the

ox

adhere
not
hen

mod-
lasses
luded
ele-
seen
template <class CollabSuper> class CONSADAPT : public CollabSuper {
public:

class Lexer : public CollabSuper::Producer { } ;
class Parser : public CollabSuper::Consumer { } ;

} ;

Now a single composition can contain two copies of thePRODCONSmixin layer, appropriately adapted. Fo
instance:

typedef COMPILER < CONSADAPT < PRODCONS <
PRODADAPT < PRODCONS < ..., Tree> >, Token > > >

CompilerApp ; (6)

In the above, theCOMPILERmixin layer is assumed to contain the functionality of a compiler that defin
three classes,Lexer , Parser , andOptimizer . These classes use the functionality supplied by the produ
consumer mixin layer. For instance, there may be aparse method inCOMPILER::Parser that repeatedly
calls theconsume and produce methods. To better illustrate the role of adaptors, Figure 5 shows
desired inheritance hierarchy for this example, as well as the way that adaptors are used to enable
ing this hierarchy using only predefined mixin layers. Note that each of the layers participating in co
sition (6), above, appears as a rectangle in Figure 5(b).

3.2.2 Comparison to Application Frameworks

In object-oriented programming, anabstractclass cannot be instantiated (i.e., it cannot be used to cre
objects) but is only used to capture the commonalities of other classes. These classes inherit the c
interface and functionality of the abstract class. Anobject-oriented application framework(or just frame-
work) consists of a suite of interrelated abstract classes that embodies an abstract design for softw
family of related systems [JF88]. Each major component of the system is represented by an abstrac
These classes contain dynamically bound methods (virtual in C++), so that the framework user can ad
functionality by creating subclasses and overriding the appropriate methods. Thus, frameworks ha
advantage of allowing reuse at a granularity larger than a single abstract class. But frameworks h
disadvantage that using them means manually making the client classes inherit from framework c
Thus, the framework classes cannot easily be interchanged (with a different, similar framework) a
client classes cannot be reused in a different context—they are hard-wired to the framework.

In a white-box framework, users specify system-specific functionality by addingmethodsto the frame-
work’s classes. Each method must adhere to theinternalconventions of the classes. Thus, using white-b
frameworks is difficult, because it requires knowledge of their implementation details. In ablack-box
framework, the system-specific functionality is provided by a set of classes. These classes must
only to the properexternal interface. Thus, using black-box frameworks is easier, because it does
require knowledge of their implementation details. Using black-box frameworks is further simplified w
they include a library of pre-written functionality that can be used as-is with the framework.

Frameworks can be used to implement collaboration-based designs, but the amount of flexibility and
ularity they can afford is far from optimal. The reason is that frameworks allow the reuse of abstract c
but have no way of specifying collections of concrete classes that can be used at will (i.e., either inc
or not and in any order) to build an application ([BCS99]). Intuitively, frameworks allow reusing the sk
ton of an implementation but not the individual pieces that are built from the skeleton. This can be
through a simple combinatorics argument. Consider a set of four features,A, B, C, andD that can be com-
bined arbitrarily to yield complete applications. For simplicity, assume that featureA is always first, and
that no feature repetition is allowed. Then a framework may encode feature combinationAB, thus allowing
16

ep-

ation is
s are
k (for
expo-

tion of a
com-

i-
the user to program combinationsABCDandABDC. Nevertheless, these combinations must be coded s
arately (i.e., they cannot use any common code other than their common prefix,AB). The reason is that
each instantiation of the framework creates a separate inheritance hierarchy and reusing a combin
possible only if one can inherit from one of its (intermediate or final) classes—only common prefixe
reusable. In our four-feature example, combinations that have no common prefix with the framewor
instance,ACD) simply cannot take advantage of it and have to be coded separately. This amounts to
nential redundancy for complex domains.

In the general case, assume a simple cost model that assigns one cost unit to each re-implementa
feature. If feature order matters but no repetitions are possible, the cost of implementing all possible
binations using frameworks is equal to the number of combinations (each combination of lengthk differs
by one feature from its prefix of lengthk-1). Thus, forn features, the total cost for implementing all comb

Tree ProducerTree Consumer

Token
Consumer

Token
Producer

Parser Optimizer Lexer

Producer Optimizer

Lexer Parser Optimizer

Tree ProducerTree Consumer

Consumer

Token ProducerToken Consumer

Lexer Parser

Figure 5(b) : By using adaptor layers (dotted rectangles), one can emulate the inheritance
hierarchy of Figure 5(a), using only pre-defined mixin layers (solid rectangles). Since a sin-
gle mixin layer (PRODCONS) is instantiated twice, adaptors help determine which class will
play which role every time.

PRODCONS

PRODADAPT

PRODCONS

CONSADAPT

COMPILER

Figure 5(a) : The desired inheritance hierarchy has a Parser inheriting functionality both
from a consumer class (a Parser is a consumer of tokens) and a producer class (a Parser
is a producer of trees).
17

ature

e
arily
men-

ility of
, unless
sition

the use
negli-
lasses
h. The
eir par-

bject-
ple-

s of the
t. A

fined)
erar-
down-
re the
me-

ving
ased
xisting
dif-

inal
hree

e
ed the

pre-
lement

classes
ndant
irected
he rea-
nations using frameworks is . (This number is derived by considering the sum of the fe

combinations of lengthk, for eachk from 1 ton.) In contrast, the cost of using mixin layers for the sam
implementation is equal ton—each component is implemented once and can be combined in arbitr
many ways. With mixin layers, even compositions with no common prefixes share component imple
tations.

Even though our combinatorics argument represents an extreme case, it is reflective of the inflexib
frameworks. Optional features are common in practice and frameworks cannot accommodate them
all combinations are explicitly coded by the user. This is true even for domains where feature compo
order does not matter or features have a specific order in which they must be used.

Another disadvantage of using frameworks to implement collaboration-based designs comes from
of dynamically bound methods in frameworks. Even though the dynamic dispatch cost is sometimes
gible or can be optimized away, often it imposes a run-time overhead, especially for fine-grained c
and methods. With mixin layers, this overhead is avoided, as there is little need for dynamic dispatc
reason is that mixin layers can be ordered in a composition so that most of the method calls are to th
ent layers.

This reveals a general and important difference between mixin-based programming and standard o
oriented programming.When a code fragment in a conventional OO class needs to be generic, it is im
mented in terms of dynamically bound methods. These methods are later overridden in a subclas
original class, thus refining it for a specific purpose. With mixin classes, the situation is differen
method in a mixin class can define generic functionality by calling methods in the class’s (yet unde
superclass. That is, generic calls for mixins can be both up-calls and down-calls in the inheritance hi
chy. Generic up-calls are specialized statically, when the mixin class’s superclass is set. Generic
calls provide the standard OO run-time binding capabilities. Their use can be limited to cases whe
exact version of the method to be called is truly not known until run-time. In contrast, in application fra
works, dynamic binding is often used just for modularity reasons (calling functionality without yet ha
defined it) even if the target ends up being known statically. This can be eliminated in a mixin-b
approach because we are allowed to add functionality to a mixin class’s superclass. Refinement of e
functionality is not just a top-down process but involves composing mixins arbitrarily, often with many
ferent orders being meaningful.

Example.We illustrate the above points with the graph algorithm example of Section 2.2. The orig
implementation of this application [Hol92] used a black-box application framework on which the t
graph algorithms were implemented. The framework consists of the implementations of theGraph , Ver-

tex , and Workspace classes for theUndirected Graphand Depth First Traversalcollaborations. The
classes implementing the depth-first traversal have methods likepreWork , postWork , edgeWork , etc.,
which are declared to be dynamically bound(virtual in C++). In this way, any classes inheriting from th
framework classes can refine the traversal functionality by redefining the operation to be perform
first time a node is visited, when an edge is traversed, etc.

VanHilst and Notkin discussed the framework implementation of this example in detail [VN96a]. Our
sentation here merely adapts their observations to our above discussion of using frameworks to imp
collaboration-based designs. A first observation is that, in the framework implementation, the base
are fixed and changing them requires hand-editing (usually copying and editing, which results in redu
code). For instance, consider applying the same algorithms to a directed, as opposed to an und
graph. If both combinations need to be used in the same application, code replication is necessary. T

n!
n k–()!

k 1=

n

∑

18

e graph

ion. In
same
can-

versal
ements

chain
h-first

of
inding
meth-

ollab-
e flexi-
s, the
ions of

le is
en role
r-

). With
son is that the classes implementing the graph algorithms (e.g.,Vertex Numbering) must have a fixed
superclass. Hence, two different sets of classes must be introduced, both implementing the sam
algorithm functionality but having different superclasses.

A second important observation pertains to our earlier discussion of optional features in an applicat
particular, a framework implementation does not allow more than one refinement to co-exist in the
inheritance hierarchy. Thus, unlike the mixin layer version of code fragment (5) in Section 3.2.1, we
not have a single graph that implements both theVertex Numberingand theCycle Checkingoperations.
The reason is that the dynamic binding of methods in the classes implementing the depth-first tra
causes the most refined version of a method to be executed on every invocation. Thus, multiple refin
cannot co-exist in the same inheritance hierarchy since the bottom-most one in the inheritance
always supersedes any others. In contrast, the flexibility of mixin layers allows us to break the dept
traversal interface in two (theDEFAULTWand theDFT component, discussed earlier) so thatDFT calls the
refined methodsin its superclass(i.e., without needing dynamic binding). In this way, multiple copies
the DFT component can co-exist and be refined separately. At the same time, obviating dynamic b
results into a more efficient implementation—dynamic dispatch incurs higher overhead than calling
ods of known classes (although sometimes it can be optimized by an aggressive compiler).

3.2.3 Comparison to the VanHilst and Notkin Method

The VanHilst and Notkin approach [VN96a-c, Van97] is another technique that can be used to map c
oration-based designs into programs. The method employs C++ mixin classes, which offer the sam
bility advantages over a framework implementation as the mixin layers approach. Nevertheles
components represented by VanHilst and Notkin are small-scale, resulting in complicated specificat
their interdependencies.

VanHilst and Notkin use mixins in C++ to represent roles. More specifically, each individual ro
mapped to a different mixin and is also parameterized by any other classes that interact with the giv
in its collaboration. For an example, consider roleB4 in Figure 6 (which replicates Figure 1 for easy refe
ence). This role participates in a collaboration together with two other roles,A4 andC4. Hence, it needs to
be aware of the classes playing the two roles (so that, for instance, it can call appropriate methods

Figure 6 : Example collaboration decomposition. Ovals represent collaborations, rectan-
gles represent objects, their intersections represent roles.

Object Classes

Role A1
C

ol
la

bo
ra

tio
ns

 (
La

ye
rs

) Collaboration
c1

Collaboration
c2

Collaboration
c3

Collaboration
c4

Object OA Object OB Object OC

Role B1

Role A2 Role B2

Role B3 Role C3

Role C4Role A4

Role C1

Role B4
19

d by

ia-
). This
e of a
er-
ping
ce, the

-
nted as
rt (e.g.,
ponen-
iscus-

nular-
many

ion). To
ss, as in
sible by

pies of
Notkin

yers,
ion. Our

Van-
luded

ting a
In this

ult. To
mmon
ro-

ers
the VanHilst and Notkin technique, the role implementation would be a mixin that is parameterize
these two extra classes:

template <class RoleSuper, class OA, class OC> class B4 : public RoleSuper {
... /* role implementation, using OA, OC */

} ; (7)

Consider that the actual values for parametersOA, OCwould themselves be the result of template instant
tions, and their parameters also, and so on (up to a depth equal to the number of collaborations
makes the VanHilst and Notkin method complicated even for relatively small examples. In the cas
composition ofn collaborations, each withm roles, the VanHilst and Notkin method can yield a paramet
ization expression of length . Additionally, the programmer has to explicitly keep track of the map
between roles and classes, as well as the collaborations in which a class participates. For instan
mixin for role A4 in Figure 1 has to be parameterized with the mixin for roleA2—the programmer cannot
ignore the fact that collaborationc3does not specify a role for objectOA. From a software evolution stand
point, local design changes cannot easily be isolated, since collaborations are not explicitly represe
components. These limitations make the approach unscalable: various metrics of programmer effo
length of composition expressions, parameter bindings that need to be maintained, etc.) grow ex
tially in the number of features supported. (This is the same notion of scalability as in our earlier d
sion of the library scalability problem.)

Conceptually, the scalability problems of the VanHilst and Notkin approach are due to the small gra
ity of the entities they represent: each mixin class represents a single role. Roles, however, have
external dependencies (for instance, they often depend on many other roles in the same collaborat
avoid hard-coding such dependencies, we have to express them as extra parameters to the mixin cla
code fragment (7). Reusable components should have few external dependencies, as made pos
using mixin layers to model collaborations.

Example.Consider a composition implementing both theCycle Checkingand theVertex Numberingopera-
tion on the same graph. Recall that the ability to compose more than one refinement (or multiple co
the same refinement) is an advantage of the mixin-based approach (both ours and the VanHilst and
method) over frameworks implementations.

The components (mixins) used by VanHilst and Notkin are similar to the inner classes in our mixin la
with extra parameters needed to express their dependencies with other roles in the same collaborat
specification is shown in Figure 7(a) (reproducing code fragment (5)). A compact representation of a
Hilst and Notkin specification is shown in Figure 7(b). (A more readable version of the same code inc

in [VN96a] is even lengthier).8

Figure 7(b) makes apparent the complications of the VanHilst/Notkin approach. Each mixin represen
role can have an arbitrary number of parameters and can instantiate a parameter of other mixins.
way, parameterization expressions of exponential (to the number of collaborations) length can res
alleviate this problem, the programmer has to introduce explicitly intermediate types that encode co
sub-expressions. For instance,V is an intermediate type in Figure 7(b). Its only purpose is to avoid int
ducing the sub-expressionVertexDFT<WS,VNumber> three different times (whereverV is used). Of course,
VNumber itself is also just a shorthand forVertexNumber<WS,VWork> . VWork, in turn, stands forVertexDe-

faultWork<WS,VGraph> , and so on.9 Additional complications arise when specifying a composition: us

8. The object code of both is, as expected, of almost identical size.

mn
20

quire-

layer

es as

ence,
nguish

that
ations
w that
nHilst

oduced
VanHilst
must know the number and position of each parameter of a role-component. Both of the above re
ments significantly complicate the implementation and make it error-prone.

Using mixin layers, the exponential blowup of parameterization expressions is avoided. Every mixin
only has a single parameter (the layer above it). By parameterizing a mixin layerA by B, A becomes
implicitly parameterized by all the roles ofB. Furthermore, ifB does not contain a role for an object thatA
expects, it will inherit one from above it. This is the benefit of expressing the collaborations themselv
classes: they can extend their interface using inheritance.

Another practical advantage of mixin layers is that it encourages consistent naming for roles. H
instead of explicitly giving unique names to role-members, we have standard names and only disti
instances by their enclosing mixin layer. In this way,VertexDFT , GraphDFT, andVertexNumber become
DFT::Vertex , DFT::Graph andNUMBER::Vertex , respectively.

In [VN96a], VanHilst and Notkin questioned the scalability of their method. One of their concerns was
the composition of large numbers of roles “can be confusing even in small examples...” The observ
above (length of parameterization expressions, number of components, consistent naming) sho
mixin layers address this problem and do scale gracefully, without losing the advantages of the Va
and Notkin implementation.

9. Some compilers (e.g., MS VC++, g++) internally expand template expressions, even though the user has explicitly intr
intermediate types. This caused page-long error messages for incorrect compositions when we experimented with the
and Notkin method, rendering debugging impossible.

class NumberC: public DFT <NUMBER <DEFAULTW <UGRAPH> > > {} ;
class CycleC : public DFT < CYCLE < NumberC > > {} ;

Figure 7(a) : Our mixin layer implementation of a multiple-collaboration composition. The
individual classes are members of NumberC, CycleC (e.g., NumberC::Vertex ,
CycleC::Graph , etc.).

class Empty {} ;
class WS : public WorkspaceNumber {} ;
class WS2 : public WorkspaceCycle {} ;
class VGraph : public VertexAdj<Empty> {} ;
class VWork : public VertexDefaultWork<WS,VGraph> {} ;
class VNumber : public VertexNumber<WS,VWork> {} ;
class V : public VertexDFT<WS,VNumber> {} ;
class VWork2 : public VertexDefaultWork<WS2,V> {} ;
class VCycle : public VertexCycle<WS2,VWork2> {} ;
class V2 : public VertexDFT<WS2,VCycle> {} ;
class GGraph : public GraphUndirected<V2> {} ;
class GWork : public GraphDefaultWork<V,WS,GGraph> {} ;
class Graph : public GraphDFT<V,WS,GWork> {} ;
class GWork2 : public GraphDefaultWork<V2,WS2,Graph> {} ;
class GCycle : public GraphCycle<WS2,GWork2> {} ;
class Graph2 : public GraphDFT<V2,WS2,GCycle> {} ;

Figure 7(b) : Same implementation using the VanHilst/Notkin approach. V corresponds to
our NumberC::Vertex , Graph to NumberC::Graph , WS to NumberC::Workspace , etc.
21

r alter-
elop-
upport
ey are

or the

al,
d elab-
endent
action.
addition
rather,
t, even
ces-

ts of
ions

ative
ed on

en col-
n of
hniques.
a

hains.
archy)
chain.
n be
posi-

niques
ology.
ation
enta-

on of

mposi-
rma-

efined
sting.

a99],

t 30K
,

3.3 Mixin Layers Considerations

We have argued that mixin layers are better for implementing collaboration-based designs than othe
natives. Nevertheless, mixin layers are certainly not a “silver bullet”. They are good for in-house dev
ment of product-line architectures for mature domains and require programming language and tool s
for specification and debugging. These points are analyzed below in more detail, but we note that th
by no means specific to mixin layers: other competitive techniques (e.g., application frameworks,
VanHilst and Notkin method) have similar restrictions.

• Appropriate Domains for Mixin Layers: Mixin layers are not appropriate for every domain. In gener
the most suitable domains are mature, well-understood, amenable to detailed decompositions an
orations of collaboration-based designs. The domain should be decomposable into largely indep
refinements. Composing such refinements need not result in an increase in the level of abstr
Instead, refinements can represent different concerns at the same conceptual level. (E.g., the
of more operations on graphs does not alter the abstraction that we are still dealing with graphs;
adding more operations merely enriches the graph abstraction.) A well-known observation is tha
in strictly layered domains, like operating systems, the notion of “information module” does not ne
sarily coincide with the notion of “layer of abstraction”. Modules may encompass different par
several layers [HFC76]. Mixin layers are a kind of "information module" and similar observat
apply.
Mixin layers lead to physically layered implementations, which may or may not have a neg
impact on application performance. Mixin layers are implementations of a standard design impos
a domain. In-house environments of individual companies are best to maintain this standard; op
laborative communities might make such standards difficult to follow. No precise quantificatio
these properties can be given, but a designer can usually assess the appropriateness of our tec

• Difficulties in Using Mixin Layers: Good OO designs limit the depth of inheritance hierarchies to
small number (e.g., 3). In contrast, compositions of mixin layers often leads to long inheritance c
This can become problematic during debugging (chasing method calls up an inheritance hier
and generally understanding where the functionality of a class is located on an inheritance
Another difficulty can be learning the order in which mixin layers can be composed. While this ca
ameliorated by good tool support [BG98], it is something more that needs to be learned and com
tion rules need to be precisely stated.

• Implementation Requirements for Mixin Layers and Interaction with Language Features: Mixin layers
are only as good as the technology to support them. Some of the proposed implementation tech
have specific technical disadvantages, especially in conjunction with particular compiler techn
For instance, our C++ template implementation of mixin layers may result in (binary) code duplic
if the same layer is used multiple times in a composition. Nevertheless, no fundamental implem
tion drawbacks exist in relation to mixin layers. Implementation considerations for the C++ versi
mixin layers are described in [SB00].
Several general programming language issues arise in connection with mixin layers and their co
tions. Most of these issues pertain to the interactions of mixin layers with type systems. Type info
tion can be used to detect errors in a composition of mixin layers. At the same time, layers are d
in isolation and the problem of propagating type information between layers is especially intere
Since the focus of this paper is not on concrete language solutions, we point the reader to [Sm
Chapter 3, where such issues are analyzed in detail.

4 An Application: The Jakarta Tool Suite

In this section, we discuss an application of mixin layers to a medium-size software project (abou
lines of code). The project is theJakarta Tool Suite (JTS)[BLS98]—a set of language extensibility tools
22

rsions
using
ating
nality

her con-
for this
le. Cur-
purpose
g (P3),

ers are
t and
to dem-

ic type
. In this
func-

ch the
which
ities—

by a
yers
s that
to Java
sier to

sential
ablished

ol, in

tended
r. For

e

ecifi-
aimed mainly at the Java language. We use mixin layers as the building blocks that form different ve
of theJak tool of JTS. Jak is the modular compiler in JTS. Different versions of Jak can be created
different combinations of layers. Layers may be responsible for type-checking, compiling, and/or cre
code for a different set of language constructs. Additionally, layers may be used to add new functio
across a large group of existing classes. In this way, the user can design a language by putting toget
ceptual language “modules” (i.e., consistent sets of language constructs) and implement a compiler
language as a version of Jak composed of the mixin layers corresponding to each language modu
rently available layers support the base Java language, meta-programming extensions, general
extensions (e.g., syntax macros for Java), a domain-specific language for data structure programmin
etc.

The choice of the compiler domain as a large-scale test case for mixin layers is not arbitrary. Compil
well-understood, with modern compiler construction benefiting from years of formal developmen
stylized design patterns. The domain of compilers has been used several times in the past in order
onstrate modularization mechanisms. Selectively, we mention thevisitor design pattern [GHJV94], which
is commonly described using the example of a compiler with a class corresponding to each syntact
that its parser can recognize (e.g., there is a class for if-statements, a class for declarations, etc.)
case, the visitor pattern can be used to add new functionality to all classes, without distributing this
tionality across the classes. Our application of mixin layers to the compilers domain has very mu
same modularization flavor. We use mixin layers to isolate aspects of the compiler implementation,
can be added and removed at will. Compared to the visitor pattern, mixin layers offer greater capabil
for instance, allowing the addition of state (i.e., member variables) to existing classes.

Overall, the outcome of applying mixin layers to JTS was very successful. The flexibility afforded
layered design is essential in forming compilers for different language dialects. Additionally, mixin la
helped with the internal organization of the code, so that changes were easily localized. Addition
could be conceptually grouped together (like those reflecting the language changes from Java 1.0
1.1) were introduced as new mixin layers, without disrupting the existing design. JTS was thus ea
implement and has become easier to maintain.

We next discuss JTS and the use of mixin layers in its implementation. Section 4.1 offers some es
background in JTS by describing the way parsers are generated and initial class hierarchies are est
based on language syntax. Section 4.2 discusses the actual application of mixin layers in JTS.

4.1 JTS Background: Bali as a Parser Generator

Bali is the JTS tool responsible for putting together compilers. Although Bali is a component-based to
this section we limit our attention to the more conventional grammar-specification aspects of Bali.

The syntax of a language is specified as a Bali grammar, which is an annotated BNF grammar ex
with regular-expression repetitions. Bali transforms a Bali grammar into a lexical analyzer and parse
example, two Bali productions are shown below: one definesStatementList as a sequence of one or mor
Statements , and the other definesArgumentList as a sequence of one or moreArguments separated by
commas.

StatementList : (Statement)+ ;
ArgumentList : Argument (‘,’ Argument)*;

Repetitions have been used before in the literature [Wir77, Wil93, Rea90]. They simplify grammar sp
cations and allow an efficient internal representation as a list of trees.
23

is rec-

nt

nd links

e the
Bali

, Bali

r, Bali
Figure

f

Bali productions are annotated by the class of objects that is to be instantiated when the production
ognized. For example, consider the Bali specification of the JakSelectStmt rule:

SelectStmt
: IF ‘(’ Expression ‘)’ Statement ::IfStm
| SWITCH ‘(’ Expression ‘)’ Block ::SwStm
;

When a parser recognizes an “if” statement (i.e., anIF token, followed by ‘(‘, Expression , ‘) ’, and
Statement), an object of classIfStm is created. Similarly, when the pattern defining a “switch” stateme
(a SWITCHtoken followed by ‘(‘, Expression , ‘) ’, and Block) is recognized, an object of classSwStm is
created. As a program is parsed, the parser instantiates the classes that annotate productions, a
these objects together to produce the syntax tree of that program.

A Bali grammar specification is a streamlined document. It is a list of the lexical patterns that defin
tokens of the grammar followed by a list of annotated productions that define the grammar itself. A
grammar for an elementary integer calculator is shown in Figure 8. From this grammar specification
generates a lexical analyzer and a parser (we use theJavaCC lexer/parser generator as a backend).

Associating grammar rules with classes allows Bali to do more than generate a parser. In particula
can deduce an inheritance hierarchy of classes representing different pieces of syntax. Consider
9(a), which shows rulesRule1 andRule2 . When an instance ofRule1 is parsed, it may be an instance o
pattern1 (an object of classC1), or an instance ofRule2 (an object of classRule2). Similarly, an instance
of Rule2 is either an instance ofpattern2 (an object ofC2) or an instance ofpattern3 (an object ofC3).
From this information, the inheritance hierarchy of Figure 9(b) is constructed: classesC1 andRule2 are
subclasses ofRule1 , andC2 andC3 are subclasses ofRule2 .

// Lexeme definitions
"print" PRINT
"+" PLUS
"-" MINUS
"(" LPAREN
")" RPAREN
"[0-9]*" INTEGER

%% // production definitions
// start rule is Action

Action : PRINT Expr :: Print
;

Expr : Expr PLUS Expr :: Plus
| Expr MINUS Expr :: Minus
| MINUS Expr :: UnaryMinus
| LPAREN Expr RPAREN :: Paren
| INTEGER :: Integer
;

Figure 8: A Bali Grammar for an Integer Calculator
24

meter

ed Jak
e type

d-code
lasses.

r of the
her with
ods). In
-

s from
ompo-
func-

ns (e.g.,
cific lan-
t vari-
ming
n. This
erent

and
at only
lating a

ments—
s is use-
sformed
Additionally, for each production Bali infers the constructors for syntax tree node classes. Each para

of a constructor corresponds to a token or nonterminal of a pattern.10 For example, the constructor of the
IfStm class has the following signature:

IfStm(Token iftok, Token lp, Expression exp, Token rp, Statement stm)

Methods for editing and unparsing nodes are additionally generated.

Although Bali automatically generates an inheritance hierarchy and some methods for the produc
compiler, there are obviously many methods that cannot be generated automatically. These includ
checking, reduction, and optimization methods. Such methods are syntax-type-specific; we han
these methods and encapsulate them as a mixin layer that contains subclasses of Bali-generated c

In essence, Bali takes the grammar specification and uses it to produce a skeleton for the compile
language. The skeleton has the form of a set of classes organized in an inheritance hierarchy, toget
the methods that can be automatically produced (that is, constructors, editing, and unparsing meth
other words, Bali produces anapplication framework[JF88] for a compiler. As we explain in the next sec
tion, the framework itself is a mixin layer that occupies the root of a mixin layer composition.

4.2 Bali Components and Mixin Layers in JTS

Apart from its parser generator aspect, Bali is also a tool that synthesizes language implementation
components. Bali can create compilers for a family of languages, depending on the selection of c
nents used as its input. This is essentially a product-line of language translators, with their common
tionality factored out in reusable components. We use the nameJak for any Bali-generated compiler.
Currently available Bali components support the base Java language, meta-programming extensio
code template operators), general purpose extensions (e.g., syntax macros for Java), a domain-spe
guage for state machines [BJMH00], and more. Compositions of these components define differen
ants of Jak (i.e., different members of a product-line of Java dialects): with/without meta-program
constructs, with/without state machine extensions, with/without data structure extensions, and so o
another instance of the library scalability problem [BSST93, Big94]. We want to compose the diff
variants of Jak from components encapsulating orthogonal units of functionality.

A Bali componenthas two parts: The first is a Bali grammar file (which contains the lexical tokens
grammar rules that define the syntax of the host language or language extension—for extensions th
change the semantics but not the syntax, this file is absent). The second is a mixin layer encapsu

10. The tokens need not be saved. However, Bali-produced precompilers presently save all white space—including com
with tokens. In this way, JTS-produced tools that transform domain-specific programs retain embedded comments. Thi
ful when debugging programs with a mixture of generated and hand-written code, and is a necessary feature if tran
programs are subsequently maintained by hand.

Figure 9: Inferring inheritance hierarchies from grammar rules

Rule1 : pattern1 :: C1
| Rule2
;

Rule2 : pattern2 :: C2
| pattern3 :: C3
;

Rule1

C1 Rule2

C2 C3

(b)(a)
25

r each

n-

sition of
ce,

n each
onding

le (the
r
g meth-

fine the

ber of
plicity
ler, all

edious,
: when
m can be

There
rameter-
., Pizza

multiple
ctically
nts.
collection of multiple hand-coded classes that contain the reduction, type-checking, etc. methods fo
syntax type defined in that grammar file.

To illustrate how classes are defined and refined in Bali, consider four concrete Bali components:Java is a
component implementing the base Java language,SST implements code template operators like tree co

structors and explicit escapes,11 GScope supplies scoping support for program generation, andP3 imple-
ments a language for data structures. The Jak language and compiler can be defined by a compo
these components. We use the[...] operator to designate component composition—for instan
P3[GScope[SST[Java]]] .

The syntax of a composed language is defined by taking the union of the sets of production rules i
Bali component grammar. The semantics of a composition is defined by composing the corresp
mixin layers. Figure 10 depicts the class hierarchy of the Jak compiler.AstNode belongs to the JTS kernel,
and is the root of all inheritance hierarchies that Bali generates. Using the composition grammar fi
union of the grammar files for theJava , SST, GScope, andP3 components), Bali generates a mixin laye
that encapsulates the hierarchy of classes that contain tree node constructors, unparsing, and editin
ods. Each remaining mixin layer then grafts onto this hierarchy its hand-coded classes. These de
reduction, optimization, and type-checking methods of tree nodes by refining existing classes.The termi-
nal classes of this hierarchy are those that are instantiated by the generated compiler.

It is worth noting that Figure 10 is not drawn to scale. Jak consists of over 500 classes. The num
classes that a mixin layer adds to an existing hierarchy ranges from 5 to 40. Nevertheless, the sim
and economy of specifying Jak using component compositions is enormous: to build the Jak compi
that users have to provide to Bali is the equationJak = P3[GScope[SST[Java]]] , and Bali does the rest. To
compose all these classes by hand (as would be required by Java) would be very slow, extremely t
and error prone. Additionally, the scalability advantages of mixin layers can easily be demonstrated
new extension mechanisms or new base languages are specified as components, a subset of the
selected and Bali automatically composes a compiler for the desired language variant.

4.3 Java Mixin Layers for JTS

In Section 3.1.3, we discussed the applicability of mixin layers in various programming languages.
we explained that Java already supports nested classes but the language currently specifies no pa
ization mechanism. Furthermore, some of the proposed parameterization mechanisms for Java (e.g

11. Our code template operators are analogous to the backquote/unquote pair of Lisp operators. Unlike Lisp, however,
operators exist in JTS—one for each syntactic type (e.g., declaration, expression, etc.). Multiple constructors in synta
rich languages are common (e.g., [WC93], [Chi96]). The main reason has to do with the ease of parsing code fragme

Bali component stack Inheritance hierarchy after mixin layers composition

Figure 10: The Jak Inheritance Hierarchy

AstNode

P3

GScope

SST

Java
Bali-generated

Subclasses added

classes

by mixin layers
26

pport
rame-

to gen-
ts was
ate our
ism for
forma-
us, our
d-time
7] and
eces-
appli-
bloat

h made

evel-
mixin
boot-
imple-
d in the
k com-
, syntax

words

defi-

ned by

va type

ce the

ware
ortu-

o add
orig-
[OW97] or Thorup’s virtual types [Tho97]) do not support parameterized inheritance. In order to su
mixin layers for Bali components in JTS, we implemented our own Java language extensions for pa
terization. This section gives a brief overview of the main language construct.

Our parameterization extensions to Java are geared towards mixin layer development (as opposed
eral-purpose genericity). Our approach in designing and implementing these language construc
motivated by pragmatic and not conceptual considerations: we needed a layer mechanism to facilit
own development efforts—not to supply the best-designed and robust parameterization mechan
Java. Therefore, our implementation was straightforward, adopting a heterogeneous model of trans
tion: for each instantiation of a mixin layer, a new Java class is created at the source code level. Th
approach resembles C++ template instantiation and does not take advantage of the facilities for loa
class adaptation offered by the Java Virtual Machine (see, e.g., the approach of Agesen et al. [AFM9
the work on binary component adaptation [KH98]). Nevertheless, in our context our approach is not n
sarily at a disadvantage. Mixin layers in Bali component compositions are never reused in the same
cation (i.e., a single Jak compiler uses at most one instance of a mixin layer). Therefore, code
(redundancy in generated classes) is not a problem. At the same time, our straightforward approac
for an easier implementation which contributed to the faster development of JTS.

The implementation of our Java extensions for mixin layer support occurred concurrently with the d
opment of JTS. In fact, an early version of JTS was used to implement the first version of our Java
layers. The Java mixin layers were, in turn, used to evolve and further develop JTS, resulting in a
strapped implementation. (Actually, this is not the only reason why JTS is based on a bootstrapped
mentation. Another reason is that the meta-programming capabilities added to Java have been use
code that implements JTS itself. The entire JTS system is compiled using a basic version of the Ja
piler, composed of only a few layers that specify the basic Java language, code template operators
macros, etc.)

The syntax of mixin layers is straightforward and resembles their C++ counterparts. Two new key
are introduced:layer andrealm . Thelayer keyword is analogous toclass but defines a mixin layer (i.e.,
an outer class that may be parameterized with respect to its superclass). Therealm keyword is used to
specify interface conformance for mixin layers, in analogy to the Javaimplements keyword. Finally, the
[...] operator is used to specify layer composition. The (slightly simplified) general form of a layer
nition is shown below, with the terminal symbols appearing in bold for clarity:

layer_definition :
layer layer_name (param_list) realm realm_name [super] { declaration_list }

The syntax for non-terminals in the above definition is straightforward.param_list is a list of type param-
eters for the mixin layer. If the parameter list contains layers, the parameterization can be constrai
specifying the expected realm of these layers. The optionalsuper construct designates anextends clause
(in much the same way as for regular Java classes). The contents of a mixin layer can only be Ja
declarations.

The actual details of our implementation are not important. We consider of much greater importan
general approach that this implementation represents. What we did in JTS is an example of adomain-spe-
cific languagesapproach to software construction. In the course of creating a medium-size soft
project, we recognized that mixin layers would facilitate our task significantly. That is, we saw an opp
nity for improving our implementation through extra language support. It then proved cost-effective t
the extra linguistic constructs that were needed (i.e., mixin layers), in the course of implementing the
inal project (i.e., JTS).
27

ay to
t lan-
reus-

tation
e pro-
t
n of
of JTS

nd code
ve not

decom-
omain
“Gen-
data-

her
buoy
the

gh we
obtain

benefit
.

.

stem

acks
amen-

e mixin
tructs

ted in
an. This

ed and have
ften used
m whole-
It is our belief that the domain-specific language approach to software construction is a promising w
building better software. The designer of a software application can (and should) be thinking abou
guage constructs that can have a significant impact in the application’s efficiency, maintainability, or
ability. Often such constructs can be readily identified, but they are not available in the implemen
language of choice. With the advent of language extensibility tools, as well as extensible/reflectiv
gramming languages, supplying special-purpose (ordomain-specific) language support may be the righ
approach in fighting software complexity. JTS itself is a tool aiming at facilitating the implementatio
domain-specific languages and language extensions. The use of mixin layers in the implementation
is a vivid demonstration of the same paradigm that JTS promotes.

5 Related Work

There is an enormous wealth of research in the area of component-based software construction a
modularization. Here we selectively discuss some approaches that are related to our work but ha
been described previously in this paper.

5.1 GenVoca

GenVoca is a layered design and implementation methodology, mainly applied toapplication generators
(i.e., compilers for domain-specific programming languages). GenVoca advocates that a domain be
posed in terms of largely-orthogonal features which are implemented as layers. Applications in the d
can be synthesized by composing layers; layer composition is performed by a generator. The name
Voca” was derived from the first two generators that exhibited these principles: Genesis (extensible

base systems) [Bat88, BBG+88] and Avoca (network protocols) [OP92]. GenVoca generators for ot
domains include: data manipulation languages [Vil94], distributed file systems [HP94], host-at-sea
systems [Wei90], and real-time avionics software [CS93]. Mixin layers were originally inspired by
GenVoca model and are now an essential part of its arsenal of implementation techniques. Althou
have not attempted full implementations, our experience suggests that mixin layers can be used to
many of the same benefits as full GenVoca generators for the above domains. That is, much of the
of GenVoca generators is due to the layering technology and not to the use of compiler techniques

5.2 Modules in High-Level Languages

High-level languages often providemodules(a.k.a.packagesor namespaces) as fundamental abstractions
Representative approaches include Adapackages[ISO95]—which is a prototypical modularization
scheme for block structured languages, ML [MTH90]—which provides a very powerful module sy

based on polymorphic types, Javapackages, and C++namespaces [Str97].12

Mixin layers are expressible in the latest incarnations of Ada (Ada95 [ISO95]). Standard ML still l
support for extensible records (i.e., a counterpart of inheritance). Nevertheless, there is nothing fund
tal that prevents integrating mixin layers in either language. Recent research has brought some of th
layers ideas in a modular language framework. Findler and Flatt’s work [FF98] introduces cons
remarkably similar to mixin layers, in an experimental, module-based object system.

The most interesting lesson, however, is that modules—unlike classes—are often not well integra
programming languages. For example, a C++ namespace cannot be parameterized, while a class c

12. It is perhaps debatable whether C++ namespaces and Java packages are modules, because they can be later re-open
more definitions added to them. Nevertheless, we choose to include these mechanisms here. In practice, they are o
under certain assumptions in the same way as modules in other languages. For instance, several Java tools perfor
package static analysis, although a change in any file of the package may invalidate the results of the entire analysis.
28

terized
Engi-

n
code

m-

roup-
ols can
e used
of a
, not a
many
nately,
.

ise be
simi-

a
sed are

e-
proce-

ication.
rtheless,

nt tech-
s-cut-

n an
lication

ented
same
s that
llabo-
prevents us from using mixin-like patterns with C++ namespaces. With class nesting and parame
inheritance, mixin layers are a kind of module with some desirable characteristics from a Software
neering standpoint.

5.3 Meta-Object Protocols

Meta-Object Protocols(e.g., [FDM94, KRB91]) are reflective facilities for modifying the behavior of a
object system while the system is being used. Classical modifications include executing arbitrary
around method invocations (methodwrapping) and changing the semantics of inheritance. Specific exa
ples of method wrapping include function tracing, invariant checking, and object locking [FDM94].

Meta-object protocols solve a different problem than mixin layers. Mixin layers address the issue of g
ing class refinements together so they can be treated as a unit. In contrast, meta-object protoc
express modifications to fundamental operations of an object system. Meta-object protocols can b
for desirable functionality additions that are not convenient with mixin layers—e.g., the application
single wrapper to all methods of a class at once. Of course, a meta-object protocol is a mechanism
design guideline. An appropriately designed meta-object protocol, allowing the encapsulation of
metaclasses in parameterized modules, could certainly be used to implement mixin layers. Unfortu
to our knowledge, none of the standard meta-object protocols offer such encapsulation capabilities

5.4 Aspect-Oriented Programming

Aspect-oriented programming (AOP)advocates decomposing application domains into orthogonalaspects

[KLM +97]. Aspects are distinct implementation entities that encapsulate code which would otherw
intertwined throughout an application. In this respect, aspect-oriented programming seems strikingly

lar to GenVoca. Indeed, early AOP manifestos [KLM+97] are very similar to the work describing GenVoc
generators: the software engineering arguments are identical and the implementation techniques u

very similar. Many of the AOP example applications in [KLM+97] are layered generators for domain-sp
cific languages (an image processing language, a language for specifying data transfer on remote
dure calls, etc.). Domain-specific languages (or language extensions) are calledaspect languagesin AOP
terminology and generators are calledaspect weavers.

An aspect, just like a collaboration, expresses a refinement that affects multiple classes of an appl
In this sense, mixin layers can be regarded as an aspect-oriented implementation technique. Neve
it is perhaps hard to find cross-cutting software implementation techniques that wouldnot qualify as
“aspect-oriented”. The term has nowadays acquired broad meaning and encompasses many differe
niques. We view using “aspect-oriented” terminology as purely a matter of taste. Certainly, the cros
ting software development ideas pre-date the introduction of “aspect-orientation”.

5.5 Adaptive OO Components

Another approach to modular OO software development is Lieberherr’sDemetermethod and adaptive
components [Lie96, LP97, ML98]. Adaptive components specify functionality additions based o
abstract pattern of participating classes. The pattern can later be applied to actual classes of an app
to extend their capabilities. This technique is analogous to identifying collaborations in an object-ori
design, only now collaborations are implementation-level entities. Note that mixin layers offer the
flexibility through the concept of adaptor layers discussed in Section 3.2.1. An important difference i
adaptor layers are themselves mixin layers. That is, with mixin layers, both the representation of a co
ration and the representation of a collaboration application are the same (namely, mixin layers).
29

o coun-

on-
. In this
le, one

s

a new
rations

is a
of
visitor

odular-

ixin
) to the
tain the

infor-
head,
end. In

access
erface
rs

design
classes

, rather

fferent,
f

y a fam-

n-

that
impor-

duced
ct or
Nevertheless, the work on adaptive components reveals an interesting direction of research, with n
terpart in our work. Adaptive components can be declared by astrategy. That is, a strategy is a way to
declaratively specify a path through theclass graph(the graph induced on classes by inheritance and c
tainment relationships among them). Along each node in the strategy, extra methods can be added
way, strategies are compact ways of expressing functionality additions to many classes. For examp
can easily specify new methods to be added to a classand all its superclasses. Similarly, assume that class
A has a member variable that can hold an instance of classB, which, in turn, may hold an instance of clas
C. Using strategies, a programmer can describe the path fromA to C in the class graph. (ClassB does not
need to be specified explicitly.) An adaptive component employing this strategy can then define
method to be added to all three classes. Thus, strategies are a higher-level way of specifying collabo
(refinements); mixin layers could be used to implement strategies.

5.6 Design Patterns for Modularization

The visitor design pattern [GHJV94] serves similar modularization purposes to mixin layers. Visitor
pattern allowing afunctionalstyle of programming in object-oriented languages: multiple definitions
the same operation (applicable to objects of several different classes) can be grouped together in a
class, instead of these methods being distributed over individual classes. Visitor is a fundamental m
ization mechanism and has been used to implement more sophisticated techniques (e.g., [ML98]).

Visitors are different from mixin layers in two ways. First, visitors are dynamic in nature, whereas m
layers are static. This means that mixin layers can be used to add state (i.e., member variables
classes they refine. (For instance, imagine a class describing a graph node. If one wants to main
information “is_marked ” for all nodes, this is easier to do with mixin layers: anis_marked field can be
added in a mixin and carried in every single refined node object. With a visitor-based approach, this
mation must be maintained in a table on the side.) Additionally, visitors impose a run-time over
unlike mixin layers. Second, visitors are not allowed to access the internals of the classes they ext
contrast, mixin layers define subclasses of the refined classes. Hence, mixin layers are often able to
more implementation details than visitors. For instance, a C++ class may export a fairly extensive int
to its subclasses (using theprotected keyword), without making the same interface public so that visito
can use it. This issue commonly arises when other design patterns (e.g.,singleton) are used in conjunction
with the visitor pattern.

Visitors, like many other design patterns, express refinements of objects or classes. Although not a
pattern, a mixin layer can be viewed as an elegant way of expressing a collaboration pattern among
so that it is clear at the language level. Mixin layers can be expressed with the aid of a type system
than bypassing it, so that more compile-time checking and optimization is possible.

5.7 Subjectivity

Objects written for one application may not be reusable in another because their interfaces are di
even though both applications may deal with what is fundamentally the same object. The principle osub-
jectivityasserts that no single interface can adequately describe any object; objects are described b

ily of related interfaces [HO93, OH92, OKH+95]. The appropriate interface for an object is applicatio
dependent (orsubjective).

Subjectivity arose from the need for simplifying programming abstractions—e.g., defining views
emphasize relevant aspects of objects and that hide irrelevant details. Ossher and Harrison took an
tant step further by recognizing that application-specific views of inheritance hierarchies can be pro
automatically by composing different “subjects” [HO93]. Subjects encapsulate a primitive aspe
30

mem-

heless,
oaches.
riented
cus on
gram-
pera-
ation

others
for this
apsu-
zations.
develop-
lication,

red by
xpres-

designs
bjects,
eature.
d mod-
.

mming
articular
to
scal-

ance
eterized
e used

T-

ise.
“view” of a hierarchy, whose implementation requires a set of additions (e.g., new data and method
bers) to one or more classes of the hierarchy.

Collaboration-based designs and mixin layers are analogous to subjectivity and subjects. Nevert
even though the goals are common, different parts of the problem are emphasized in the two appr
The biggest difference between subject-oriented programming and our approach is that a subject-o
approach aspires to combine programs that are developed completely independently. Mixin layers fo
a different problem: the consistent refinement of groups of classes, in order to raise the level of pro
ming from single-class to multiple-class components. Mixin layers need to be developed with intero
bility in mind. This makes mixin layers a more general technique, but with a lower degree of autom
and little applicability to pre-written software—manual adaptation is required.

6 Conclusions

Improved modularizations are the key to improved component-based software development. We and
have observed that traditional notions of modularization—method, class, package—are inadequate
purpose. Many different results in modularization point to large-scale refinements—the ability to enc
late and modularize fragments of classes and methods—as the basis for next-generation modulari
The core idea centers on the idea of refinement as the centerpiece for component-based software
ment. Our refinements are large-scale: a single refinement can update multiple classes of an app
and a composition of a few refinements specifies a complete implementation of an application.

The fragments of classes and methods that need to be encapsulated arenot arbitrary.Rather, fragments are
encapsulated together when they all define how a particular service or feature, which can be sha
many applications of a domain, is implemented. That is, these fragments must have meaningful e
sions in software designs. We have shown that the object-oriented concept of collaboration based
captures this idea. A collaboration is an abstract design that specifies roles for different classes of o
and defines protocols by which objects of these classes interact to realize a particular service or f
Collaborations are the way large-scale (i.e., multi-class) refinements are expressed in object-oriente
els. Applications are typically defined by compositions of a small number of reusable collaborations

We have shown how collaborations can be defined and composed statically using existing progra
language constructs, and how they can be supported by new language constructs. We presented a p
way of expressing large-scale refinements asmixin layers, a name chosen to emphasize its connection
the commonmixin concept in object-oriented languages. We showed how mixin layers overcame the
ability difficulties that plagued prior work. They rely on a novel combination of parameterized inherit
and class nesting, in effect generalizing the concept of a package (set of classes) so that param
packages could participate in inheritance lattices. As an example, we showed how mixin layers wer
as the primary implementation technique for building an extensible compiler for the Java language.

References

[AFM97] O. Agesen, S. Freund, and J. Mitchell, “Adding Type Parameterization to the Java Language”,OOPSLA
1997, 49-65.

[Bat88] D.S. Batory, “Concepts for a Database System Compiler”, inProceedings of the Seventh ACM SIGAC
SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, Texas, March 21-23 1988,
ACM Press, pages 184-192.

[BBG+88] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell, and T. E. W
GENESIS: An extensible database management system. InIEEE Transactions on Software Engineering,
November 1988. Also, inReadings in Object-Oriented Database Systems, S. Zdonik and D. Maier, ed.,
Morgan Kaufmann, 1990.
31

ming

s.

uct-
e

ges”,

with

ding

nics

M”,

t-

ly of

ject-

ts)”,

rd
[BC89] K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriented Thinking”,OOPSLA 1989,
1-6.

[BC90] G. Bracha and W. Cook, “Mixin-Based Inheritance”,ECOOP/OOPSLA 1990, 303-311.

[BCRW98] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual Program
Environments for Generators”,Int. Conference Software Reuse, 1998.

[BCS98] D. Batory, R. Cardone, and Y. Smaragdakis, Object-Oriented Frameworks and Product-Line1st
Software Product-Line Conference, Denver, Colorado, August 1999.

[BG96] G. Bracha and D. Griswold, “Extending Smalltalk with Mixins”,Workshop on Extending Smalltalkat
OOPSLA 1996. Seehttp://java.sun.com/people/gbracha/mwp.html .

[BG98] D. Batory and B.J. Geraci. Composition Validation and Subjectivity in GenVoca Generators,IEEE
Transactions on Software Engineering, February 1997, 67-82.

[Big94] T.J. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete Component Reuse”,3rd Int.
Conf. on Softw. Reuse (ICSR ‘94).

[BJMH00] D. Batory, C. Johnson, R. MacDonald, and D. von Heeder, "Achieving Extensibility Through Prod
Lines and Domain-Specific Languages: A Case Study",International Conference on Software Reus,
Vienna, Austria, 2000.

[BLS98] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implementing Domain-Specific Langua
5th Int. Conf. on Softw. Reuse (ICSR ‘98), IEEE Computer Society Press, 1998.

[BO92] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems
Reusable Components”,ACM TOSEM, October 1992.

[BOSW98] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, “Making the future safe for the past: Ad
Genericity to the Java Programming Language”,OOPSLA 1998.

[BSST93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”,ACM SIGSOFT1993.

[Chi96] S. Chiba, “Open C++ Programmer's Guide for Version 2”, SPL-96-024, Xerox PARC, 1996.

[CS93] L. Coglianese and R. Szymanski, “DSSA-ADAGE: An Environment for Architecture-based Avio
Development”,Proc. AGARD 1993.

[CW85] L. Cardelli and P. Wegner, On Understanding Types, Data Abstraction, and Polymorphism,Computing
Surveys, 17(4): Dec 1985, 471-522.

[FDM94] I.R. Forman, S. Danforth, and H. Madduri, “Composition of Before/After Metaclasses in SO
OOPSLA 1994.

[FF98] R.B. Findler and M. Flatt, “Modular Object-Oriented Programming with Units and Mixins”,Int. Conf.
on Functional Programming, 1998.

[FKF98] M. Flatt, S. Krishnamurthi, M. Felleisen, “Classes and Mixins”. ACMSymposium on Principles of
Programming Languages, 1998 (PoPL 98).

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of Reusable Objec
Oriented Software. Addison-Wesley, 1994.

[GJS96] James Gosling, Bill Joy, Guy L. Steele,The Java Language Specification, Addison-Wesley, Reading,
Massachusetts, 1996.

[HFC76] A.N. Habermann, Lawrence Flon, and Lee Cooprider, “Modularization and Hierarchy in a Fami
Operating Systems”,Communications of the ACM 19(5), May 1976, 266-272.

[HHG90] R. Helm, I. Holland, and D. Gangopadhyay, “Contracts: Specifying Behavioral Compositions in Ob
Oriented Systems”,OOPSLA 1990, 169-180.

[Hol92] I. Holland, “Specifying Reusable Components Using Contracts”,ECOOP 1992, 287-308.

[HO93] William Harrison, and Harold Ossher, “Subject-Oriented Programming (A Critique of Pure Objec
OOPSLA 1993, 411-428.

[HP94] John S. Heidemann and Gerald J. Popek, “File system development with stackable layers”,ACM
Transactions on Computer Systems, February 1994, 58-89.

[ISO95] ISO/IEC revised international standard 8652:1995,Ada 95 Reference Manual (Language and Standa
Libraries).

[Jav97a] Javasoft,Java Core Reflection Specification, 1997. In [JavWeb].

[Jav97b] Javasoft,Java Inner Classes Specification, 1997. In [JavWeb].
32

ect-

rns

t-

cient
7-15,

are

nted

the

es”,

ess-
n and

r

ixin-
[JavWeb] JavaSoft documentation, available at: http://java.sun.com/products/jdk/1.1/docs/ .

[JF88] R. Johnson and B. Foote, “Designing Reusable Classes”,Journal of Object-Oriented Programming,
1(2): June/July 1988, 22-35.

[KH98] R. Keller, U. Hoelzle, “Binary Component Adaptation”,ECOOP 1998.

[KLM +97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin, “Asp
Oriented Programming”,ECOOP 1997, 220-242.

[KRB91] G. Kiczales, J. des Rivieres, and D. G. Bobrow,The Art of the Metaobject Protocol, MIT Press, 1991.

[Lie96] K.J. Lieberherr,Adaptive Object-Oriented Software: The Demeter Method with Propagation Patte,
PWS Publishing Company, Boston, 1996.

[LK98] C.V. Lopes and G. Kiczales, “Recent Developments in AspectJ”,ECOOP'98 Workshop Reader (Aspec
Oriented Programming Workshop), Springer-Verlag LNCS 1543.

[LP97] K.J. Lieberherr and B. Patt-Shamir, "Traversals of Object Structures: Specification and Effi
Implementation", College of Computer Science, Northeastern University, Tech. Report NU-CCS-9
July 1997.

[MBL97] A. Myers, J. Bank and B. Liskov, “Parameterized Types for Java”, ACMSymposium on Principles of
Programming Languages, 1997 (PoPL 97).

[Mez97] M. Mezini, “Dynamic Object Evolution without Name Collisions”,ECOOP 97, 190-219.

[ML98] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play Components for Evolutionary Softw
Development”,OOPSLA 1998.

[MM89] O. L. Madsen and B. Møller-Pedersen, “Virtual classes: A powerful mechanism in object-orie
programming”,OOPSLA 1989, 397-406.

[Mon96] T. Montlick, “Implementing Mixins in Smalltalk”,The Smalltalk Report, July 1996.

[Moo86] D.A. Moon, “Object-Oriented Programming with Flavors”,OOPSLA 1986.

[MTH90] R. Milner, M. Tofte, and R. Harper,The Definition of Standard ML, MIT Press, Cambridge,
Massachusetts and London, England, 1990.

[NR68] P. Naur and B. Randall, editors,Software Engineering: A Report on a Conference Sponsored by
NATO Science Committee, NATO Scientific Affairs Division, Brussels, Belgium, 1968.

[OH92] H. Ossher and W. Harrison, “Combination of Inheritance Hierarchies”,OOPSLA 1992, 25-40.

[OKH+95] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal, “Subject-Oriented Composition Rul
OOPSLA 1995, 235-250.

[OP92] Sean W. O’Malley and Larry L. Peterson. A Dynamic Network Architecture. InACM Transactions on
Computer Systems, May 1992, 110-143.

[OW97] M. Odersky and P. Wadler, “Pizza into Java: Translating theory into practice”,ACM Symposium on
Principles of Programming Languages, 1997 (PoPL 97).

[Par79] David L. Parnas, “Designing Software for Ease of Extension and Contraction”,IEEE Transactions on
Software Engineering, 5(2), 1979.

[RAB+92] T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nordhagen, E. N
Ulseth, G. Oftedal, A. Skaar, and P. Stenslet, “OORASS: Seamless Support for the Creatio
Maintenance of Object-Oriented Systems”,Journal of Object-Oriented Programming, 5(6): October
1992, 27-41.

[Rea90] Reasoning Systems, “Dialect User’s Guide”, Palo Alto, California, 1990.

[Rum94] J. Rumbaugh, “Getting Started: Using use cases to capture requirements”,Journal of Object-Oriented
Programming, 7(5): Sep 1994, 8-23.

[SB00] Y. Smaragdakis and D. Batory, “Mixin-Based Programming in C++”, inGenerative and Compo-
nent-Based Software Engineering Symposium (GCSE), 2000. In Lecture Notes in Compute
Science (LNCS) 2177, Springer-Verlag.

[SB98a] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented Components”,5th Int. Conf.
on Softw. Reuse (ICSR ‘98), IEEE Computer Society Press, 1998.

[SB98b] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layers”,ECOOP 1998.

[SCD+93] P. Steyaert, W. Codenie, T. D'Hondt, K. De Hondt, C. Lucas, and M. Van Limberghen, “Nested M
Methods in Agora”,ECOOP 1993, 197-219.
33

Dept.

ration

of

ns”.

re

Tech.

ctic
[Sma99] Y. Smaragdakis, “Implementing Large-Scale Object-Oriented Components”, Ph.D. Dissertation,
of Computer Sciences, University of Texas at Austin, 1999.

[Str97] B. Stroustrup,The C++ Programming Language, 3rd Ed., Addison-Wesley, 1997.

[Tho97] K. Thorup, “Genericity in Java with Virtual Types”,ECOOP 1997, 444-471.

[TOHS99] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, “N degrees of separation: multi-dimensional sepa
of concerns”,ICSE 1999, 107-119.

[Van97] M. VanHilst, “Role-Oriented Programming for Software Evolution”, Ph.D. Dissertation, University
Washington, Computer Science and Engineering, 1997.

[Vil94] Emilia E. Villarreal. Automated Compiler Generation for Extensible Data Languages, Ph.D. Thesis.
Department of Computer Sciences, University of Texas at Austin, 1994.

[VN96a] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”,JSSST
International Symposium on Object Technologies for Advanced Software, Springer-Verlag, 1996, 22-37.

[VN96b] M. VanHilst and D. Notkin, “Using Role Components to Implement Collaboration-Based Desig
OOPSLA 1996.

[VN96c] M. VanHilst and D. Notkin, “Decoupling Change From Design”,ACM SIGSOFT 1996.

[WC93] D. Weise and R. Crew, “Programmable Syntax Macros”,ACM SIGPLAN Notices 28(6), 1993, 156-165.

[Wei90] David M. Weiss.Synthesis Operational Scenarios. Technical Report 90038-N, Version 1.00.01, Softwa
Productivity Consortium, Herndon, Virginia, August 1990.

[WeiWeb] K. Weihe, “A Software Engineering Perspective on Algorithmics”, available at
http://www.informatik.uni-konstanz.de/Preprints/ .

[Wil93] D.S. Wile, “POPART: Producer of Parsers and Related Tools”, USC/Information Sciences Institute
Report, November 1993.

[Wir77] Niklaus Wirth, “What Can We Do about the Unnecessary Diversity of Notation for Synta
Definitions?”,Communications of the ACM 20(11), November 1993, 822-823.
34

	Mixin Layers: An Object-Oriented Implementation Technique for Refinements and Collaboration-Based...
	Yannis�Smaragdakis
	College of Computing
	Georgia Institute of Technology
	Atlanta, GA 30332
	yannis@cc.gatech.edu
	Abstract
	Content Indicators
	1 Introduction
	2 Background: Collaboration Based Designs
	2.1 Collaborations and Roles
	Figure 1 �: Example collaboration decomposition. Ovals represent collaborations, rectangles repre...

	2.2 An Example
	Figure 2 �: Collaboration decomposition of the example application domain: A depth-first traversa...

	3 Implementing Collaboration-Based Designs with Mixin Layers
	3.1 Mixin Classes and Mixin Layers
	3.1.1 Introduction to Mixins
	3.1.2 Mixin Layers
	Figure 3 �: Mixin layers schematically.

	3.1.3 Mixin Layers in Various OO Languages
	C++
	template <class LayerSuper> class ThisMixinLayer: public LayerSuper { public: ��class FirstClass ...

	CLOS (and other reflective languages)
	Java

	3.2 Implementing Collaboration-Based Designs
	3.2.1 Using Mixin Layers
	template <class CollabSuper> class CollabThis : public CollabSuper { public: ��class FirstRole �:...
	Example
	template <class CollabSuper> class NUMBER :�public CollabSuper { public: ��class Workspace : publ...
	Figure 4 (a) : A composition implementing the vertex numbering operation
	for�(v = (Vertex*)firstNeighbor(); v != NULL;�v = (Vertex*)nextNeighbor()) �{��edgeWork(v, work...
	class NumberC : public DFT < NUMBER <�DEFAULTW�< UGRAPH > > > {}; class CycleC �: public DFT < CY...

	Multiple Collaborations in a Single Design
	typedef COMPILER < CONSADAPT < PRODCONS < �������������������PRODADAPT < PRODCONS < ..., Tree> >,...
	Figure 5 (b) : By using adaptor layers (dotted rectangles), one can emulate the inheritance hiera...

	3.2.2 Comparison to Application Frameworks
	Example

	3.2.3 Comparison to the VanHilst and Notkin Method
	Figure 6 �: Example collaboration decomposition. Ovals represent collaborations, rectangles repre...
	template <class RoleSuper, class OA, class OC> class B4 : public RoleSuper { ���... /* role imple...

	Example
	Figure 7 (a) : Our mixin layer implementation of a multiple-collaboration composition. The indivi...

	3.3 Mixin Layers Considerations

	4 An Application: The Jakarta Tool Suite
	4.1 JTS Background: Bali as a Parser Generator
	Figure 8 : A Bali Grammar for an Integer Calculator
	Figure 9 : Inferring inheritance hierarchies from grammar rules

	4.2 Bali Components and Mixin Layers in JTS
	Figure 10 : The Jak Inheritance Hierarchy

	4.3 Java Mixin Layers for JTS

	5 Related Work
	5.1 GenVoca
	5.2 Modules in High-Level Languages
	5.3 Meta-Object Protocols
	5.4 Aspect-Oriented Programming
	5.5 Adaptive OO Components
	5.6 Design Patterns for Modularization
	5.7 Subjectivity

	6 Conclusions
	References

